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ABSTRACT
Increasing quantum circuit fidelity requires an efficient instruction

set to minimize errors from decoherence. The choice of a two-

qubit (2Q) hardware basis gate depends on a quantum modulator’s

native Hamiltonian interactions and applied control drives. In this

paper, we propose a collaborative design approach to select the

best ratio of drive parameters that determine the best basis gate for
a particular modulator. This requires considering the theoretical
computing power of the gate along with the practical speed limit of
that gate, given themodulator drive parameters. The practical speed

limit arises from the couplers’ tolerance for strong drivingwhen one

or more pumps is applied, for which some combinations can result

in higher overall speed limits than others. Moreover, as this 2Q basis

gate is typically applied multiple times in succession, interleaved by

1Q gates applied directly to the qubits, the speed of the 1Q gates can

become a limiting factor for the quantum circuit, particularly as the

pulse length of the 2Q basis gate is optimized. We propose parallel-
drive to drive the modulator and qubits simultaneously, allowing

a richer capability of the 2Q basis gate and in some cases for this

1Q drive time to be absorbed entirely into the 2Q operation. This

allows increasingly short duration 2Q gates to be more practical

while mitigating a significant source of overhead in some quantum

systems. On average, this approach can decrease circuit duration

by 17.8% and decrease infidelity for random 2Q gates by 10.5%

compared to the currently best reported basic 2Q gate,

√
iSWAP.
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1 INTRODUCTION
Quantum Computers (QCs) leverage quantum superposition and

entanglement which, unlike classical computers, allows the QC

core computing element, or qubit, to conceptually interact with all

other qubits, simultaneously. This provides the promise of solving

problems that that are intractable for classical computers. Currently

realized QCs are part of the Noisy Intermediate-Scale Quantum

(NISQ) era. NISQ machines with more than a hundred qubits can

be readily created [1]; however, the qubit interactions remain lim-

ited to small neighborhoods and these quantum operations—or

quantum gates—have limited fidelity. While these “noisy” quantum

operations continue to improve, even the best gates typically do

not exceed 99.9% fidelity [2–5].

Quantum interactions are realized through qubit-qubit coupling.

Coupling is possible when there is a physical connection between

the qubits and is governed by a modulator. These modulators range

from as simple as capacitive couplings to more elaborate nonlinear

circuits [1, 6, 7]. The major source of error in superconducting QC

hardware, which is at the heart of machines by IBM and Google,

comes from qubit decoherence. Thus, continued improvements

in quantum gate capabilities and speeds are required to increase

feasible circuit depth.

A critical component to building better quantum circuits is to

identify the best basis gate that can be realized by themodulator. The

reason for selecting a single basis gate is that calibrating gates is an

expensive process. Otherwise, one could just calibrate every single

possible gate, or at least each gate that is required for a particular

quantum workload. Also, gates must to be calibrated independently

between each pair of qubits as each pair will require different pa-

rameters and frequencies to be addressed uniquely. Moreover, gate

calibrations are finicky processes that drift over time, requiring

periodic re-calibration [8]. Thus, a single gate calibration or deter-

mining multiple gate parameters as a function of the calibrated gate

is necessary to make this process tractable [9].

However, the metric for determining the best basis gate may not

be clear. A standard metric for determining the quality of a gate is to
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calculate its Haar score, which is its aggregate coverage of all two-

qubit gates, as represented in a 3D space by the Weyl Chamber [10].

While this is a good representation of the computational power

of the gate, many quantum algorithms tend to be reduced to the

CNOT family of gates to complete their computational work [11].

The remainder of the circuit typically requires the non-entangling

SWAP gate, primarily to move data on the machine’s interconnection

topology. Thus, a basis gate that best optimizes these two operations

of CNOT and SWAP is also a useful metric.

In this work, we consider parametrically driven interactions,

in which far off-resonant drives activate an effective two-body

interaction between a pair of qubits [12–14]. To create the set of

all possible basis gates we explore the coupler in the form of its

Hamiltonian expression and the drive parameters that can be used

to tune different 2Q basis gates. By adjusting the ratio of gain and

conversion terms of the Hamiltonian that naturally implements

the iSWAP family of gates, it is possible to also directly implement
the CNOT and B families of gates, as well as other more exotic gates

(see Section 2 below). However, the pulse times to implement these

gates is a function of the drive capacity of the modulator.

To further complicate basis gate selection, these parametrically-

driven gates depend on an actuator/modulator that has an inherent

speed limit due to factors such as fridge heating or disrupting para-

metric coupling [15]. The parametric drive terms, e.g., the gain and

conversion terms, both contribute towards the speed limit, but com-

bine in a non-linear way. Thus, finding the fastest basis gate can

become an optimization function of both the theoretical computing
power of the gate and the pulse time of that gate due to the physical
speed limit of that particular ratio of drive parameters.

Moreover, when approaching gate decomposition of the selected

basis gate, current approaches only consider the frequency and

speed of two-qubit (2Q) gates. For more accurate analysis, it is

important to consider the inherent speed limits of the device. For

instance, previous work [16] has shown that using a continuum

of a basis gate can achieve increasingly efficient decomposition.

However, if a smaller duration basis gate is used, it must be balanced
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Figure 1: The optimal Haar gate in the iSwap-family changes
as function of the 1Q gate times. This is because the num-
ber of gate applications increases for smaller cost 2Q basis
gates, which trades off with interleaved 1Q layers.

√
iSWAP

minimizes duration costs for non-negligible 1Q gates.

against the increased relative cost of one-qubit (1Q) gates required

for decomposition using traditional techniques. Figure 1 shows that

using increasingly small fractional basis gates for decomposition

remains practical up to a limit of

√
iSWAP shown for examples of

1Q gates consuming either 10% (red dotted line) or 25% (blue dotted

line) the duration of a 2Q gate.

This paper introduces a collaboratively designed quantum archi-
tecture that includes a new methodology for analyzing gate costs

to select the appropriate 2Q basis gate while proposing a novel

parallel-drive technique that drives both the modulator and the

qubits directly. The parallel-drive approach allows the selected 2Q

basis gate to increase in Haar volume, and in some cases, can elimi-

nate the need for interspersed 1Q gates improving decomposition

and overall circuit durations.

Parallel-drive is illustrated in Figure 2 where the technique turns

the straight Cartan trajectories of 2Q gates into curves in the Weyl

Chamber, eliminating some of the vertices represented 1Q gates.

Using parallel-drive it is possible to calibrate two basis gates, one

with and without parallel-drive, to realize the benefit of both a

smaller duration 2Q basis gate as well as eliminating many 1Q

gates. In particular, this paper makes the following contributions:

• We characterize simultaneous application of two basic para-

metric interactions to implement 2Q gates and articulate the

various 2Q gate families that can be realized.

• We observe that partially pulsed gates, e.g.,
√
iSWAP, can be

more efficient than the full pulse gate, e.g., iSWAP. However,
when using smaller fractions of a gate, the overhead of the

1Q gates becomes more significant.

• We present a parallel-drive methodology to improve the

agility of a basis gate by concurrently driving the modulator

and the participating qubits. We show that parallel-drive can

improve the computing capability of a basis gate and provide

the potential to remove interleaved 1Q gates in repeated

application of 2Q gates.

(a) Traditional Trajectory (b) Parallel-Driven Trajectory

Figure 2: Cartan trajectories [17] for CNOT (blue) and SWAP
(red) using

√
iSWAP basis. Trajectories represent the total ac-

cumulated unitary transformation over time, beginning at
Identity I and ending at the target gate 𝑈𝑇 . Black dots repre-
sent interleaved 1Q gates where orientation can be changed.
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Figure 3: Generic decomposition 2Q unitary← 2Q basis gate.

• We present a detailed study of using speed limits and parallel-

drive to reduce circuit delay for important quantum comput-

ing workloads including an improved decomposition equiv-

alency for iSWAP and CNOT built with
4
√
iSWAP.

In the next section we explore the basis gate design space from

a modulator by exploring parameters of the Hamiltonian.

2 HAMILTONIAN DESIGN SPACE
Fundamentally, quantum gates are unitary matrix operations, or

unitaries, that act on quantum states. In general, 1Q and 2Q gates

form the building blocks of quantum circuits [11]. A native quan-

tum gate set, analogous to a classical computer’s instruction set,

defines which unitary operations are available to use on a machine.

The available gates depends on the engineered Hamiltonian of the

system, which is related to the unitary, described by Schrödinger’s

equation, 𝑈 (𝑡) = 𝑒−𝑖𝐻̂𝑡/ ¯ℎ
. In superconducting QCs, parametric

driving on a qubit-coupling mechanism provides control over the

Hamiltonian to activate the desired unitary and corresponding gate.

Using Cartan’s KAK decomposition [18, 19], an arbitrary 2Q

gate can be built from repeated applications of a universal 2Q ba-

sis gate with interleaved 1Q gates (Figure 3). Simple techniques

for gate decomposition use this interleaving template and via an

exact analytical solution [20, 21], or an approximate numerical opti-

mizer [22–24], find a solution to the 1Q gates for a variable number

of repetitions. We refer to a basis template as a quantum circuit that

interleaves the basis gate 𝐾 times. To perform decomposition, the

template is instantiated with the sufficient size 𝐾 .

Crucially, the proper selection of basis gate determines the over-

all complexity of the transpiled quantum algorithm, as different

basis gates may require comparatively larger or smaller 𝐾 in de-

composition. Moreover, each basis gate has a latency depending on

the system’s physical interactions. For this reason, characteriz-
ing the set of candidate basis gates requires reasoning about
both their decomposition efficiency, 𝐾 [𝑈𝐵], as well as their
hardware latency, 𝐷 [𝑈𝐵].

As discussed in Section 1, the set of possible 2Q gates is repre-

sented geometrically by the Weyl Chamber [25–27], where locally-

equivalent 2Q gates, differing only by 1Q gates, are mapped to the

same coordinate.

This comes from the assumption that any locally equivalent gate
for a particular 2Q gate has the same entangling power and decom-

position efficiency. For example, CZ and CX/CNOT can be considered

the same equivalent gates in this context. Also, the unitary con-

jugates are reflected over the x-axis, which is like executing the

gate backwards, so essentially it is only necessary to plot gates on

the left side of the chamber. In this work, references to a 2Q basis

gate may refer generally to the set of locally equivalent gates with
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Figure 4: Parallel-drive decomposition for a 2Q unitary

matched computational power; however, references to 2Q target

gates include the additional 1Q costs of local basis translation re-

quired for algorithm correctness. To reason about decomposition,

we plot a gate’s coverage volume, which are regions that span all

gates buildable by a template. The use of monodromy polytopes [10]

analytically creates the coverage sets, so we can reason about span-

ning volumes of 𝐾 gate applications, decide if a gate is contained

in a template, and output its weighted volume.

Revisiting Figure 2, conceptually, the pair of 1Q gates orients the

trajectory in a particular direction, then the 2Q basis gate traverses

the Weyl Chamber to a new point. Using traditional decomposition

(Figure 2a) to implement a CNOT or SWAP functionality using
√
iSWAP

follows the template in Figure 3. The first leg in the Weyl Chamber

is identical, shown as purple. As the point of interest was not yet

reached, the direction is re-oriented (1Q gates) before drawing the

next line. CNOT is reached in two steps, but the process repeats for

SWAP until the point is reached, which happens on the third step.

This process is akin to a car driving on established straight roads,

including intersections at fixed points where the car can select new

roads to follow.

Parallel-drive replaces a 2Q gate with several partially pulsed

2Q gates, which have unique simultaneous drives to the qubits,

shown in Figure 4 for four time steps. This allows the trajectories

to become curves, akin to steering while driving, which allows U3

and U4 to be eliminated when implementing CNOT and SWAP from a

parallel-drive iSWAP family of gates (Figure 2b).

2.1 Flexible Realization of Gates with
Parametric Couplings

Parametric or tunable couplers in superconducting qubit systems

can be driven with external flux and/or microwave fields to create a

wide variety of two-qubit gates [14, 17, 28–30]. Two families of inter-

actions used in parametric amplification are photon exchange and

two-mode squeezing/gain, which can naturally realize iSWAP gates

among two-level or anharmonic qubits. These couplers provide a

versatile and flexible way to implement various gate operations,

making them a valuable tool in superconducting qubit systems [31].

These couplers can be driven to produce a wide variety of 2Q

gates, especially those in the Weyl Chambers’ floor, which are just

combinations of simultaneous gain and conversion driving
1
. We

can write such a combination Eq. 1,

𝐻̂ = 𝑔𝑐 (𝑒𝑖𝜙𝑐𝑎†𝑏 + 𝑒−𝑖𝜙𝑐𝑎𝑏†) + 𝑔𝑔 (𝑒𝑖𝜙𝑔𝑎𝑏 + 𝑒−𝑖𝜙𝑔𝑎†𝑏†), (1)

1
Note, careful attention must be paid to the nonlinearity and encoding of the qubit

states being used. For instance, the same parametric interaction among qubits real-

ized as transmons produces different gates than high-Q cavities, for which the latter

produces Fock states.



where 𝑔𝑐 , 𝑔𝑔 and 𝜙𝑐 , 𝜙𝑔 represent the pump-controlled amplitude

and phase, respectively, such that 𝑔𝑐 , 𝜙𝑐 result from difference (con-

version) driving and 𝑔𝑔, 𝜙𝑔 are from sum (gain) driving.

Each choice of control parameters yields a continuum of gates.

To illustrate the flexibility of jointly driving multiple interactions si-

multaneously, the case with both couplings are at non-zero strength

and both pump phases are set to zero arrives at the following uni-

tary:

𝑈 (𝑡) =


cos𝜃𝑔 0 0 −𝑖 sin𝜃𝑔

0 cos𝜃𝑐 −𝑖 sin𝜃𝑐 0

0 −𝑖 sin𝜃𝑐 cos𝜃𝑐 0

−𝑖 sin𝜃𝑔 0 0 cos𝜃𝑔

 (2)

such that 𝜃𝑐 = 𝑔𝑐𝑡, 𝜃𝑔 = 𝑔𝑔𝑡 , where 𝑡 is the driving time.

By varying the interaction strengths 𝑔𝑐 and 𝑔𝑔 at a fixed 𝑡 = 1.

The iSWAP gate in this language is given by setting 𝜃𝑐 or 𝜃𝑔 to
𝜋
2
,

yielding Eq. 3.

𝐻̂ =
𝜋

2

(𝑎†𝑏 + 𝑎𝑏†) or 𝐻̂ =
𝜋

2

(𝑎𝑏 + 𝑎†𝑏†), (3)

while the CNOT gate can be realized by setting 𝜃𝑐 = 𝜃𝑔 = 𝜋
2
, yielding

Eq. 4.

𝐻̂ =
𝜋

4

(𝑎†𝑏 + 𝑎𝑏†) + 𝜋
4

(𝑎𝑏 + 𝑎†𝑏†) . (4)

There is a continuous set of possible unitary operators that can

be naturally realized by this Hamiltonian. By visualizing this in the

Weyl Chamber (Figure 5a) these two points of interest appear at

both ends of the yellow band, with the iSWAP at the tip and CNOT
along the baseline at the

𝜋
2
point. In fact, the theoretical power of

this Hamiltonian covers the entire base plane of the Weyl Chamber

with different points reachable in different ratios of 𝜃𝑔 and 𝜃𝑐 and

total angle 𝜃𝑔 + 𝜃𝑐 .
A vital question, then, is which combination of drives yields the

best gate? There are several important factors for selecting this gate

such as the decompositional efficiency of the gate and the pulse

time of the gate. There is evidence that fractional pulse duration

gates can be more efficient (e.g.,
√
iSWAP vs iSWAP), further reducing

pulse time. In the next section, we detail the physical processes

which enable parallel-drive using fractional basis gates.

2.2 Realization of Parallel Parametric Gates
Transmon Hamiltonians have been explored to optimize pulses

for creation of specific gates or algorithms [32–35]. In our work,

we modify the “Conversion-Gain” Hamiltonian discussed in the

previous section by appending single-qubit X-gates with drive am-

plitudes 𝜖1 (𝑡), 𝜖2 (𝑡), each described by 𝐷 [2𝑄]/𝐷 [1𝑄] discrete time

steps (Eq. 5). Essentially this creates parallel 1Q gates to occupy the

duration of the 2Q gate, each with a distinct amplitude (Figure 4).

𝐻̂ = 𝑔𝑐 (𝑒𝑖𝜙𝑐𝑎†𝑏 + 𝑒−𝑖𝜙𝑐𝑎𝑏†) + 𝑔𝑔 (𝑒𝑖𝜙𝑔𝑎𝑏 + 𝑒−𝑖𝜙𝑔𝑎†𝑏†)

+ 𝜖1 (𝑡) (𝑎 + 𝑎†) + 𝜖2 (𝑡) (𝑏 + 𝑏†) (5)

By allowing this extension there are two important outcomes

that reduce the overall circuit latency: (1) the basis gate coverage

region can be enriched and (2) 1Q gates and their sequential delay

may be able to be absorbed into the 2Q gate operation, to improve

overall circuit time.

We propose a calibration strategy that sets the basis gate to the

same pulse duration of a 1Q gate. Specifically, for the Supercon-

ducting Nonlinear Asymmetric Inductive eLement (SNAIL) modula-

tor [36] used in our prototyping experiments, we recommend using

an
4
√
iSWAP gate, which satisfies D[1𝑄] = 0.25 = D[2𝑄]. Parallel-

drive does introduce a frequency Kerr-shift on the qubits, which

requires adjusting the parallel-driven gate for a qubit frequency

shift [14, 37]. Unlike optimal-control protocols that require complex

calibration due to the continuously changing control requirements,

parallel-drive activates/deactivates qubit drive pulses simultane-

ously during these discrete time steps. Thus, calibration requires

tuning two gates, regular
4
√
iSWAP and

4
√
iSWAP under this constant

frequency shift under parallel-drive.

This frequency shift is proportional to the fourth-order coupling

term. Existing calibration schemes, such as interleaved-randomized

and cross-entropy benchmarking, can fine-tune frequency drives

for non-Clifford gates without affecting overhead. Modulators like

the SNAIL utilize third-order coupling while minimizing the fourth-

order coupling term to avoid frequency crowding such that parallel-

drive should not sacrifice qubit fidelity. Unfortunately, parallel-drive

may create additional crosstalk in the IBM cross-resonance gate due

to its dependence on fourth-order coupling. However, the new IBM

initiative to build machines with parametric couplers may allow for

high-fidelity parallel-drive. In the next section we discuss methods

to evaluate this decomposition efficiency.

2.3 Gate Score Methodology
In order to optimize the choice of control parameters, it is first

necessary to reason about the unitaries’ decomposition efficiency.

We compare two methodologies to quantify the decomposition effi-

ciency of a gate: uniform gate distribution and algorithm-sampled

distributions. While decomposition determines the number of iter-

ations required of a basis gate to realize a target unitary 𝑈𝑇 , recall

from Figure 5a, different realizable gates from the Hamiltonian

require different pulse times. To represent both aspects of a gate

we define 𝐾𝑈𝐵
[𝑈𝑇 ] as the number of basis gates (𝑈𝐵 ) to build the

target (𝑈𝑇 ) and 𝐷𝑈𝐵
[𝑈𝑇 ] as the normalized duration to build a

target using the basis. The expectation E operator signifies the cost
averaged over the random Haar distribution.

The Haar measure [38], is used to construct a uniform distri-

bution of 2Q gates. Conceptually, it is a density function inside

the Weyl Chamber which weights the perfect entangler interior

region more heavily than the exterior I (identity) and SWAP vertices.
It is used to build a Haar score, a common metric to quantify the

decomposition power of a basis set. The Haar score is the expected

number of gates (𝐾) to generate Haar random 2Q gates. In other

words, it is a volume-weighted average over the basis template’s

spanning regions to achieve full Weyl Chamber coverage. This is

demonstrated in Figure 6, by plotting the 𝐾-template spanning

region for some popular 2Q gates. The iSWAP gate (Figure 6a) can
reach the bottom plane in 𝑘 = 2 and the entire volume in 𝑘 = 3.

The

√
iSWAP gate (Figure 6b) actually has better coverage at 𝑘 = 2

with a shorter pulse time. The popular CNOT (Figure 6c) has sim-

ilar coverage behavior as iSWAP, which is reasonable as both are

Clifford gates. The B gate (Figure 6e) minimizes E[Haar] because it
spans the entirety of the region in 𝑘 = 2 (green), whereas

√
CNOT



(a) Set of gates natively produced by conversion and
gain parametric driving. The color bar indicates 𝜃𝑔 +
𝜃𝑐 , normalized by 𝜋/2.

(b) Frequency of gates from set of 16-qubit
benchmarks transpiled onto an 4 × 4 square
lattice topology.

0.0

0.5

1.0

|𝑔
⟩ 
𝑝
𝑒𝑟
𝑐𝑒
𝑛
𝑡

10

5

0

10

15

25

20

20 30 40 50

𝑔
𝑔

/2
𝜋

  (
M

H
z)

 

𝑔𝑐/2𝜋  (MHz) 

(c) Demonstration of limitation of gain and
conversion coefficients (𝑔𝑔 and 𝑔𝑐 ) when
both processes are turned on.

Figure 5: Analysis of basis gate choice including, gate range and timing, gate usage by application, and impact of drive ratio.

(Figure 6d) does not completely span the chamber until six steps

(𝑘 = 6, yellow).

√
B sits between

√
iSWAP and

√
CNOT requiring 𝑘 = 4

(orange).

Unfortunately, the E[Haar] score fails to capture that in practice,

gates are not uniformly distributed. Algorithms are written primar-

ily using CPhase gates, implemented by controlled unitaries, ana-

lytically decomposed into 2Q CNOT gates. The reason why CPhase
gates are ubiquitous in algorithm design may be explained by the

Quantum Singular Value Transform (QSVT), a key subroutine of

(a) iSWAP (b)
√
iSWAP

(c) CNOT (d)
√
CNOT

(e) B (f)
√
B

Figure 6: Gate coverage sets. red: 𝑘 = 1, green: 𝑘 = 2, blue:
𝑘 = 3, orange: 𝑘 = 4, purple: 𝑘 = 5, cyan: 𝑘 = 6

Grover’s Search, Phase Estimation, and Hamiltonian Simulation cir-

cuits [39]. The QSVT subroutine encodes an operator 𝑨 as a block

inside a larger unitary matrix, 𝑼 . When 𝑨 is a unitary matrix, then

𝑼 becomes a controlled 𝑨 operator, which naturally decomposes

into CPhase 2Q gates [11]. Even algorithms which use different sub-

routines, such as Quantum Approximate Optimization Algorithm

(QAOA), still rely on the CNOT for their own reasons. In QAOA, the

Hamiltonian cost function maps to states that are diagonal in the

computational basis, such that the canonical expansion is into ZZ
gates [40]. Simply put, creating new quantum algorithms is such

a difficult task, most known algorithms are variations of the same

subroutine, which happens to use controlled-gate operators [41].

Moreover, qubit connectivity topologies necessitate data move-

ment via SWAP gates. Due to the limited connection topologies of

NISQ superconducting QCs of square lattice and heavy hex, SWAP
gates are required to move data into qubits in the same neighbor-

hood. It has been shown that these gates can dominate transpiled

gate counts [42, 43].

The frequency of SWAP gates naturally depends on the coupling

topology. For simplicity, we consider a 4x4 square lattice topology

as the target coupling map. For a representative set of quantum

benchmarks including QFT, QAOA, Adder, Multiplier, GHZ, Hidden

Linear Function, and VQE, but excluding the special case of Quan-

tum Volume, the workloads were mapped to this topology using the

Qiskit v0.20.2 transpiler with -O3 (optimization level 3), inducing

the necessary SWAPs. The results are displayed in a “shot-chart” that

increases the size of the plotted gates relative to its frequency in the

workloads, as shown in Figure 5b. From this experiment, the most

frequent targeted gates are SWAP followed by CNOT, with iSWAP as a
more distant third. Interestingly, there is a significant usage of CNOT
family gates, which show up along the Weyl Chamber baseline.

Thus, an alternative gate scoring function introduces 𝑉 (𝑈𝐵),
which weights the decomposition cost of target,𝑈𝑇 , using the basis

gate duration, 𝐷𝑈𝐵
[𝑈𝑇 ], by the frequency of the target gate, for

instance as shown in Figure 5b. The best basis gate would minimize

this weighted cost as shown in Eq. 6.

𝑉 (𝑈𝐵) =
∑︁
𝑈𝑇

𝑓 (𝑈𝑇 )𝐷𝑈𝐵
[𝑈𝑇 ] (6)



Table 1: Decomposition Gate Counts (𝑘). Each value is de-
termined by the spanning regions from Figure 6 Best value
reported in blue, worst value reported in red.

iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

K[CNOT] 2 2 1 2 2 2

K[SWAP] 3 3 3 6 2 4

E[K[Haar]] 3 2.21 3 3.54 2 2.50

K[𝑊 (.47)] 2.53 2.53 2.06 4.12 2 3.06

As gatesmust typically be calibrated prior to knowing the circuits

they will be programmed to implement, a simplified distribution

might only consider and weight the dominating CNOT and SWAP
gates, which, by extension, will generally be true for any CPhase
algorithm deployed to the device. We fit the value 𝜆 as ratio of CNOT
to the total of CNOT and SWAP gates using our benchmark workloads

as illustrated in Figure 5b.

𝑊 (𝑈𝐵, 𝜆) = 𝜆 ∗ 𝐷𝑈𝐵
[CNOT] + (1 − 𝜆) ∗ 𝐷𝑈𝐵

[SWAP] (7)

This ratio, 𝜆 = 731/(731 + 828) ≈ 0.47. Therefore, the weighted

function𝑊 (𝑈𝐵, 0.47) serves to optimize basis gate selection over

quantum workload circuits. We go on to refer to this weighted

distribution of gates as𝑊 (𝜆 = .47).
Table 1 compares the decomposition cost of the six common gates

from Figure 6 in terms of number of gates to realize target gates of

SWAP and CNOT, as well as Haar and our empirical𝑊 distributions.

The best performing gate for Haar is the B because it can span

the Weyl Chamber in 𝑘 = 2, however,

√
iSWAP and

√
B perform

well with 𝑘 = 2.21 and 𝑘 = 2.5, respectively. The𝑊 cost function

requires a gate that is good at both CNOT and SWAP. While the 𝐾

function is useful for reasoning about theoretical computational

capabilities, the 𝐷 function better compares the implementation

of these gates as it considers pulse times and their impact on the

decomposition cost, which we explore in the next section.

2.4 Speed Limit Scaled Duration Costs
Although each of the discussed candidate basis gates, as well as

many other gates, are natively produced by conversion/gain Hamil-

tonians, different combinations of drives require different duration

pulse sequences. It follows from Eq. 1 and Eq. 2, to realize a spe-

cific gate with fixed 𝜃𝑐 and 𝜃𝑔 , the interaction strengths 𝑔𝑐,𝑔 are

inversely proportional to time 𝑡 . Thus, a unitary is realizable with

the shortest duration when the interaction strengths are as a strong

as possible.

However, in a real physical system, the effective 𝑔𝑐 and 𝑔𝑔 coef-

ficients cannot be infinitely large due to physical limitations. Ex-

amples include over-driving the modulator, which can result in

drive lines causing heating, instability in non-linear objects, “bright-

state”-ing, bifurcation, chaos, population leakage [44], among oth-

ers. Understanding the various physical mechanisms in determining

these speed limits with the goal to improve them is an ongoing

research effort both for parametrically driven qubit gates and the

related field of parametrically driven amplifiers [37, 45, 46].

The maximum magnitude is specific to the system being used. In

general, it can be described with a Speed Limit Function (SLF) which

describes the valid operating range for variable drive strengths. The

SLF represents the boundary of the regions where the parameters

obey the speed limit and coupling operates correctly versus where

the speed limit was exceeded and the unitary gate fails.

2.4.1 Characterizing Gate Speed Limits. To illustrate a concrete

example of how the speed limit appears in a parametric coupling

system and inform our co-design study, we swept the 𝑔𝑔, 𝑔𝑐 drive

strengths for a SNAILmodulator [36] coupled with transmon qubits.

The gain-, and conversion-only experiments were first performed

individually between a qubit and the SNAIL coupler mode to find

the maximum 𝑔𝑐 when 𝑔𝑔 = 0 and vice versa. This calibrates the

relations between the drive amplitudes and the 𝑔 coefficients. Then,

the pumps were detuned from the on-resonance frequencies (so that

the drive affects the SNAIL but we perform no two-qubit gate) and

applied simultaneously to the SNAIL coupler at different amplitude

combinations. The result of this study is shown in Figure 5c.

To monitor the speed limit, which manifests as a break point of
the SNAIL coupler, a second qubit that also couples to the SNAIL

mode is used. This second test qubit is prepared in the ground state

and measured immediately after the gain and conversion pumps

were turned off. Excitation of this second monitoring qubit signals

exceeding the speed limit, in which the SNAIL coupler transitions

to a (at present poorly understood) chaotic behavior and creates

photons in both itself and coupled modes, illustrated by the red

region in the Figure 5c. The blue region indicates the monitoring

qubit remained in the ground state and represents our proxy for all

the feasible 𝑔𝑔 and 𝑔𝑐 combinations that can be used to construct

2Q gates. Finally, the SLF of interest is illustrated as the boundary

between the blue coupling region and the red non-coupling region,

shown as the white line. A few characteristics of interest from

Figure 5c: first, 𝑔𝑐 can be driven much harder than 𝑔𝑔 and second,

the SLF is non-linear.

To capture this experimental information for determining the

best basis gate, unitaries described by the values 𝑔𝑐 , 𝑔𝑔 and time 𝑡 ,

a gate can be visualized as a line from the origin with the same 𝑔𝑐
to 𝑔𝑔 ratio that intersects with the SLF to define 𝑔𝑚𝑎𝑥

𝑐 and 𝑔𝑚𝑎𝑥
𝑔 .

The ratio of change in drive strength is accompanied by inverse

scaling of 𝑡 to find 𝑡𝑚𝑖𝑛
. This process is described in Algorithm 1.

We normalized the speed limit to eliminate any dependencies on

hardware-specific gate durations by uniformly scaling it based on

the fastest iSWAP intersection, either on the x-axis or y-axis. We

adjust the scaling such that the first x- or y-intercept to reach 𝜋/2
sets the fastest iSWAP to 𝑡𝑚𝑖𝑛 = 1. Now, rather than reporting

𝐷 [𝑈𝐵] in units of time, we use units proportional to one (1) iSWAP
duration, colloquially referred to as a single pulse. In the next section
we update our decomposition analysis using the gate speed limits.

2.4.2 Circuit Decomposition Costs. Integrating the SLF into dura-

tion efficiency combines the theoretical and practical aspects of gate

counts to predict circuit latency. Speed-limited duration of the same

popular basis gates reported previously are contained in Table 2.

Compared to the theoretical gate counts where CNOT and B both

outperformed

√
iSWAP, the speed analysis explains why, in prac-

tice,

√
iSWAP becomes the more optimized basis gate, as

√
iSWAP

has lowest consistent pulse cost for Haar score (1.11) and the best

weighted𝑊 score (1.27).



Figure 7: Hardware speed limit characterization. For each
gate, drive parameters are optimized by finding the intersec-
tion of the speed limit with the gate’s conversion and gain
drive rates.

Table 2: Decomposition duration. DBasis is the normalized
pulse duration for each candidate basis gate based on the
SLF. Each decomposition score is computed using Table 1
and Algorithm 1

Basis iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

SNAIL Characterized Speed Limit
DBasis 1.00 0.50 1.78 0.89 1.40 0.70
D[CNOT] 2.00 1.00 1.78 1.78 2.81 1.41

D[SWAP] 3.00 1.50 5.35 5.35 2.81 2.81

E[Haar] 3.00 1.11 5.35 3.17 2.81 1.76

D[W(.47)] 2.53 1.27 3.67 3.67 2.81 2.15

To find the best basis gate for implementing these target unitaries,

the speed limit functions are plotted in Figure 7. As the gate family

is defined by the ratio between 𝑔𝑐 and 𝑔𝑔 terms, we plot the ratios

from the origin for the CNOT (CX) (blue dotted lines), B (red dotted

line) and iSWAP (green dotted lines, which are along the x-axis

[conversion] and y-axis [gain]), gate families.

Algorithm 1 Scale gate scores using speed limit function

Input: SLF,𝑈𝐵 (𝜃𝑐 , 𝜃𝑔), 𝐾𝑈𝐵
[𝑈𝑇 ], 𝐷 [1𝑄]

Find the largest 𝑔𝑐 and 𝑔𝑔 which produces the input U

𝛽 ← 𝜃𝑔/𝜃𝑐
Find intersection of 𝑔𝑔 = 𝛽𝑔𝑐 with SLF (𝑔𝑐 ) by solving{
𝑔𝑚𝑎𝑥
𝑔 = 𝛽𝑔𝑚𝑎𝑥

𝑐

𝑔𝑚𝑎𝑥
𝑔 = SLF(𝑔𝑚𝑎𝑥

𝑐 )
Scaling time using updated strengths

𝑡𝑚𝑖𝑛 ← 𝜃𝑐/𝑔𝑚𝑎𝑥
𝑐

Scale decomposition cost by duration

𝐷𝑈𝐵
[𝑈𝑇 ] ← 𝐾𝑈𝐵

[𝑈𝑇 ] ∗ 𝑡𝑚𝑖𝑛 + (𝐾𝑈𝐵
[𝑈𝑇 ] + 1) ∗ 𝐷 [1𝑄]

return 𝐷𝑈𝐵
[𝑈𝑇 ]

Interestingly, for our characterized system, because CNOT is a

comparatively slower gate in terms of pulse length, it is actually

faster to realize CNOT using 2
√
iSWAP gates rather than a directly

calibrated CNOT in the modulator. Due to the strong preference for

conversion drives in the SNAIL, iSWAP is the obvious choice for a
basis gate. However, recalling Table 2, basis gates from the same

gate family can yield significantly different results depending on

the pulse length, e.g.,
√
iSWAP. The preference for conversion drives

may not always hold true in some iSWAP modulators, including the

SNAIL device, where the behavior depends on the characteristics of

the different resonant frequencies of the device. Therefore, moving

forward we utilize a more generic characterization, where 𝑔𝑐 +𝑔𝑔 ≤
𝐿, resulting in a Linear SLF of 𝑔𝑔 = 𝐿 − 𝑔𝑐 .

Furthermore, we must keep in mind from decomposition rules

(Figure 3), templates include interleaved 1Q gates. Our results indi-

cate that for negligible 1Q gate duration, the optimal basis gate is

much closer to Identity I, than for non-negligible 1Q gates, which

tend to be much closer to

√
iSWAP, CNOT, and B. In the next section

we discuss the impact of basis gate selection and fractional pulse

lengths as impacted by 1Q gates.

2.5 Interleaving 1Q Gates
The trend to treat 1Q gates as negligible is due to the relative sim-

plicity to engineer single qubit interactions and as such, for them to

be less likely to be a significant source of error. Prior work confirms

that

√
iSWAP is the more efficient basis gate when only considering

2Q gate costs [21, 43]. However, when decoherence over time is

the primary source of error, we find there is an important tradeoff

between faster basis gates and increased 𝐾-template lengths (Fig-

ure 1), thus, the accumulated 1Q gate count impacts total duration

more for fractional basis gates.

In practice, 1Q gates can be quite fast, e.g. around 10% [47] the

duration of the basis gate (𝐷 [1𝑄] = 0.1). In other systems with

very fast 2Q gates, the 1Q gates are as much as twice as slow

as the full pulse 2Q gate [2, 4], depending on the modulator. We

treat all 1Q gates as having the same duration, which can be made

possible using virtual Z-gates [48]. Now the overall duration of a

𝑈𝐵 decomposition can be expressed as in Eq. 8, which sums both

the 2Q and 1Q durations for 𝐾 repetitions. To show the impact on

decomposition, Table 3 shows the decomposition efficiency for the

linear speed limit when 1Q gates are 25% of the speed of a full pulse

2Q gate. Similar calculations for other speed limits follow the same

trends.

𝐷𝑈𝐵
[𝑈𝑇 ] = 𝐾𝑈𝐵

[𝑈𝑇 ]𝑡𝑚𝑖𝑛 + (𝐾𝑈𝐵
[𝑈𝑇 ] + 1)𝐷 [1𝑄] (8)

The total circuit delay can be calculated as in described in Eq. 9,

where the pulse delay from Eq. 8 is summed for all gates on the

critical path of the full circuit.

𝐷𝑈𝐵
[Circuit] =

∑︁
𝑈𝑇 on Critical Path

𝐷𝑈𝐵
[𝑈𝑇 ] (9)

Based on the results of this analysis, it is clear that for a linear

speed limit,

√
iSWAP is the most duration optimized basis gate (Fig-

ure 1). Furthermore, this methodology offers useful insights for

experimentalists when constructing their own basis gates, given

their own Hamiltonian design-space and 1Q gate speeds. This is

especially pertinent, demonstrated by our hardware speed limit,



Table 3: Decomposition duration with 𝐷 [1𝑄] = 0.25. Each
value is computed using Eq. 8 with linear SLF.

iSWAP
√
iSWAP CNOT

√
CNOT B

√
B

D[CNOT] 2.75 1.75 1.50 1.75 2.75 1.75

D[SWAP] 4.00 2.50 4.00 4.75 2.75 3.25

E[D[Haar] 4.00 1.91 4.00 2.91 2.75 2.13

D[W(.47)] 3.41 2.15 2.83 3.34 2.75 2.55

Figure 8: Gates natively produced by conversion and gain
parametric driving with parallel 1Q gate drives (𝐾 = 1). Color
bar indicates the sum of the 𝑔𝑐 and 𝑔𝑔, normalized to 𝜋/2.

when there is a strong preference to using one kind of interaction.

Moreover, as fraction of the 2Q pulse becomes shorter (approaches

Identity I), the 1Q gate duration becomes more significant such

that the theoretical limit of small pulses of iSWAP becomes capped,

with the limit remaining closer to

√
iSWAP. In the next section, we

introduce parallel-driven gates as a means of improving the basis

gate coverage volumes, and consequently reducing duration costs

by effectively executing the 2Q and 1Q gates simultaneously.

3 PARALLEL 1Q DRIVE FOR BASIS
OPTIMIZATION

In the previous section, we explored the use of variable conver-

sion/gain drives to achieve different basis gates for varying pulse

lengths, with optimized driving power ratios determined by the

speed limit. Another method to achieve a selection of basis gates is

by simultaneously driving the qubits involved in the 2Q gate, which

enables part of the “steering” work of the interleaved 1Q layers

to be carried out in parallel during the 2Q gate operation. This

is possible because the drive to the modulator governing the 2Q

interactions is distinct from the drive to the qubits implementing

the 1Q gates. With the “parallel-drive” approach, only one 2Q basis

gate needs to be calibrated in two conditions: with and without 1Q

qubit driving.

3.1 Computing Parallel-Drive Coverage Sets
To demonstrate the additional computing capabilities of basis gates

using parallel-driven 1Q gates, we first show the increased set of

primitive basis gates (𝐾 = 1) found by sweeping the free variables of

the Hamiltonian (Eq. 5), plotted in Figure 8 (compared to Figure 5a).

The important outcome is that the parallel-driven basis gates extend

off the bottom plane into the volume of the Weyl Chamber, which

guarantees that our basis templates with parallel-drive, 𝐾 ′, will be
able to build some targets with fewer iterations than without, 𝐾0,

e.g., 𝐾 ′ ≤ 𝐾0. This translates to an advantage in Haar Score.

As the analytical volume coverage calculation of monodromy

polytopes cannot support 2Q gates with parallel-drive, we devel-

oped a numerical procedure to estimate the expanded regions. First

the coverage region is seeded with randomized parameters. Second,

based on the loosely articulated region, target points outside the

region are identified to help clarify the outer boundaries. Using

an optimizer to these target points a point at the outside edge of

the region can be found. The approach is described in Algorithm 2,

which constructs a polytope using the lrs [49] backend via the

convex hulls defined by a set of Weyl Chamber coordinates. In or-

der to preserve convexity, we partition the coordinate list into left

and right sides of the Weyl Chamber (𝑐1 = 𝜋/2), with convex hulls

created separately. Finally, we specifically target exterior points

I, CNOT, iSWAP and SWAP as these gates are unlikely to be reached

via Haar uniform randomization. To optimize the template to reach

each exterior point, we adapt the strategy from previous work [43,

50], and use the Nelder-Mead optimization method [51] with a

Makhlin invariant functional approach [33, 52]. The free variables

are phase (𝜙𝑐,𝑔) and 1Q drive amplitude (𝜖1 (𝑡), 𝜖2 (𝑡)) bounded by

(0, 2𝜋), for each 𝐾 iterations of the template, as shown in Figure 9a.

We consider four discrete 1Q drive time steps when building

the extended volumes. This corresponds 𝐷 [1𝑄] = 0.25, for a full

pulse iSWAP, hence 𝐷 [2𝑄] = 1. Previous work has explored driving

1Q gates with many more time steps [32]; however, in our experi-

mentation, four time steps provides sufficiently similar coverage

sets as compared to 250 time steps, but in a more reasonable com-

puting time. For example, Figure 9b plots the norm training loss

of an iSWAP basis converging to CNOT in less than 600 iterations,

and Figure 9c plots the updated coordinate after each iteration.

The final (yellow) coordinate successfully converges to the target

CNOT at (𝜋/2, 0, 0). Note that arbitrarily small error is possible with

increased training iterations and 1Q time steps. In the next section,

we explore the impact of parallel-drive on Weyl Chamber coverage.

3.2 Impact of Parallel-Drive on Decomposition
The extended volumes for each of the six comparative basis gates are

reported in Figure 10. The first major difference from the traditional

coverage sets (Figure 6) is that the 𝐾 = 1 in red has increased

from being only local to the basis gate into a non-zero volume.

Second, each𝐾 spanning region is a superset of its original coverage

volumes. Third, no gate reaches 100% coverage in less template

repetitions than before, which highlights the inherent difficulty of

optimizing the SWAP gate.

Using the same procedure as before, the coverage volumes can be

used to find the 𝐾 and 𝐷 costs shown in Tables 4 and 5, respectively.

Note, internal 1Q gates are unnecessary if the target gate is identical

to multiple fractional copies of the basis gate, e.g., iSWAP formed

from two

√
iSWAPs. While, this seems trivial for traditional circuits

where a straight line in the Weyl Chamber continues twice as far,

when adding parallel-drive, this property becomes more important

as this line becomes a volume in theWeyl Chamber, providing more

opportunities to eliminate interleaved 1Q gates.



2Q (𝑔𝑐 , 𝑔𝑔, 𝜙𝑐 , 𝜙𝑔,
𝜖1 (𝑡), 𝜖2 (𝑡),𝑇 )
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(a) Decomposition template (b) Iterative gate coordinate (c) Convergence plot (d) Optimized cartan trajectory

Figure 9: (a) The decomposition template given to the Nelder-Mead optimizer. To bound the coverage regions we attempt to
converge to exterior Weyl Chamber points. (b)–(c) 𝐾 = 1 iSWAP is verified to contain CNOT by optimizing over 𝜖1 (𝑡) and 𝜖2 (𝑡). (d)
The resulting parallel-drive unitary evolution.

Algorithm 2 Method for calculating approximate improved vol-

umes from parallel-drive

Basis Template← 𝑔𝑐 , 𝑔𝑔,𝑇

𝑘 ← 0

while Coverage Volume not 100% do
𝑘 ← 𝑘 + 1

Coordinate List← []

Randomly Generate Coverage Points

for N iterations do
Template← Random(𝜙𝑐 , 𝜙𝑔, 𝜖1 (𝑡), 𝜖2 (𝑡))
U← Evaluate(Template)

(x,y,z)← Convert U to Weyl coordinate

Coordinate List← (x,y,z)

end for
Train for Exterior Coordinates

for target in (I, CNOT, SWAP, iSWAP) do
Save every coordinate along training path

Coordinate List← Template.optimize(target)

end for
Coordinate List partitioned into left and right

Convex Hulls← Coordinate List

Basis.Polytope[k]← Convex Hulls

end while
return Haar Volume(Basis.Polytopes)

We use this property to build joint coverage sets between iSWAP

and

√
iSWAP which create decomposition rules using either gate in

the decomposition template. Interestingly, predominately

√
iSWAP

sees a significant advantage from this procedure, as 𝐾 = 1 iSWAP
partially covers the perfect entangling region, which is heavily

favored by the Haar distribution. For instance, the 𝐾 = 1 iSWAP
volume contains the point ( 𝜋

2
, 𝜋

4
, 𝜋

4
), which renders the 𝐾 = 2√

iSWAP coverage of the same point unnecessary, and eliminates the

duration from the 1Q gate in the decomposition. Both

√
CNOT and√

B obey the same rule, but with smaller overlapping volumes. This

makes the advantage present, but less significant. After applying

parallel-drive to improve the computing power of each basis gate,

we continue to find that

√
iSWAP is the best candidate for a basis

gate. Next, we will build explicit decomposition rules into this basis,

(a) iSWAP (b)
√
iSWAP

(c) CNOT (d)
√
CNOT

(e) B (f)
√
B

Figure 10: Parallel 1Q drive extended gate coverage sets.
N=3000 random samples. red: 𝑘 = 1, green: 𝑘 = 2, blue: 𝑘 = 3,
orange: 𝑘 = 4, purple: 𝑘 = 5, cyan: 𝑘 = 6

implement them into a transpilation scheme, and report improved

simulated fidelities on quantum algorithm benchmarks.

4 PARALLEL-DRIVE FOR ISWAP-FAMILY
Our work has shown the advantage in calibrating a basis gate with

the smallest fraction of total pulse time that does not compromise

fidelity. This can improve Haar score by reducing unnecessary

computational work done by longer duration gates. Additionally,

our approach does not incur significant calibration overhead, as



Table 4: Extended basis decomposition gate count cost (𝐾).
Value determined by extended spanning regions (Figure 10)

iSWAP
√
iSWAP CNOT

√
CNOT B

√
𝐵

K[CNOT] 1 2 1 2 1 2

K[SWAP] 2 3 3 6 2 4

E[K[Haar]] 1.35 2.17 2.33 3.52 1.75 2.50

K[W(.47)] 1.53 2.53 2.06 3.65 1.53 3.06

Table 5: Extended basis decomposition duration cost (𝐷) us-
ing parallel-drive, (D[1Q]=.25, Linear SLF). Fractional basis
scores are calculated using the joint spanning regions be-
tween themselves and the full basis gate, selecting the lowest
cost template.

iSWAP
√
iSWAP CNOT

√
CNOT B

√
𝐵

D[CNOT] 1.5 1.5 1.5 1.5 1.5 1.5

D[SWAP] 2.75 2.25 4 4 2.75 2.75

E[D[Haar]] 1.94 1.71 3.16 2.88 2.44 2.06

D[W(.47)] 2.16 1.90 2.83 2.83 2.16 2.16

only a minimal basis set must be calibrated. We take advantage of

the fact that basis gates naturally combine to create larger fractions

of themselves, i.e., a
√
iSWAP and iSWAP can be constructed by two

and four
4
√
iSWAPs, respectively, to reason about joint coverage sets.

Short basis gates are useful for building gates near Identity I, such
as the small controlled-phase rotations that appear in QFT; capable

of combination to take long strides, e.g., to SWAP; and can take

advantage of parallel-drive to boost computational power.

4.1 Parallel-Drive for Improving CNOT and SWAP
The methodology of creating coverage sets for parallel-driven gates

allows us to easily improve decomposition templates via inspec-

tion. The CNOT-family and SWAP decomposition rules are given in

Figure 11 and Figure 12
2
. The iSWAP as a function of 𝜖1 (𝑡), 𝜖2 (𝑡)

is constructed using the approach from Figure 4 using iSWAP in

place of the generic 2Q gate. Recall, both the CNOT and SWAP de-

compositions are demonstrated graphically in Figure 2, where the

parallel-drive is responsible for the curve in the trajectory. In a

full transpilation scheme, the optimizer would be required to fit

the exterior 1Q gate parameters, but for the purpose of simulating

duration-dependent fidelity, the actual solution is unnecessary.

The Weyl Chamber does not represent distances and pulse costs

uniformly and may mistakenly convey that a shorter, direct tra-

jectory from I to 𝑈𝑇 reduces the required 2Q basis duration, e.g.
building CNOT with parallel-driven

√
iSWAP. However, there is a

persistent requirement that 1 total iSWAP pulse durations appear in
the decomposition to be able to reach CNOT, likewise 1.5 total iSWAP
pulse duration is required to reach SWAP. These inherent costs are
more rigorously detailed using quantum resource theories [53], and

explain that 2Q decomposition can only be further optimized by

removing the 1Q gate delays, but never a shorter 2Q time i.e., the
fundamental invariant related to “computing power.”

2
For all other gates, the gate coverage set is used as a lookup table for the required

template size.

This inherent relationship between iSWAP and CNOT is depicted in
Figure 13, such that a fractional duration iSWAP always contains the

same fractional duration CNOT. For instance, K=2 with
√
iSWAP or

K=1 with parallel-drive iSWAP both reach CNOT. Of course,
√
iSWAP

is still the more powerful basis despite this relation to CNOT for

containing additional Weyl Chamber volume. Both iSWAP and CNOT
are special perfect entanglers, and interestingly a non-entangling

SWAP gate can be used to convert back and forth between gates [54].

4.2 Simulated Fidelity Improvements
We utilize a circuit fidelity model that captures the primary source

of error as decoherence in time following the methodology of prior

work [42, 43]. The fidelity of a final qubit state, F𝑄 , over a single
path or wire in the circuit exponentially decays as a function of the

ratio of circuit duration time and the qubit’s 𝑇1 (relaxation rate).

Then the total circuit fidelity, F𝑇 is given by the composite final

qubit state, and thus is exponential with number of qubits. For this

reason, even small improvements in circuit duration cascade into

improved path and total circuit fidelities.

F𝑄 = 𝑒−𝐷 [Circuit]/𝑇1
(10)

F𝑇 =

𝑁∏
𝑖=1

F𝑄𝑖
(11)

Our transpilation scheme uses the SLF normalized durations𝐷 [𝑈𝐵],
which are converted back into units of time by multiplying by

the iSWAP duration. To quantify these improvements we choose

𝐷 [iSWAP] = 100 ns and𝐷 [1𝑄]= 25 nswith qubit lifetime𝑇1= 100 µs,

which is consistent with transmon qubits using a SNAIL modula-

tor [14]. Using these values, the improvements from the reduced

duration decompositions over CNOT, SWAP, and Haar random targets

are given in Table 6. The baseline uses previously derived analytical√
iSWAP decomposition rules [21]. Note that although exterior gates

are used in the CNOT decomposition to make it perfectly equivalent,

quantum algorithms often have 1Q gates before and after CNOT
gates. Therefore, the circuit’s 1Q gates and the decomposition sub-

stitution’s 1Q gates would naturally combine for an even lower cost

than represented here.

In our transpilation flow, we start by consolidating runs of all uni-

tary blocks into 2Q gates and inducing SWAPs on a 4×4 square-lattice

topology
3
. We then decompose each gate into the

√
iSWAP basis

with the pulse duration calculated by the provided SLF. Decompo-

sition uses predefined substitutions for gates locally equivalent to

CNOT-family and SWAP gates (see Figure 2b). If a rule is not known,

we load the iSWAP and
√
iSWAP extended coverage sets to construct

a minimum size 𝐾 template. Finally, we consolidate consecutive

1Q gates and report the remaining durations on each path. Our

decomposition improvements using parallel-drive led to an aver-

age relative reduction in duration of 17.8% for the set of quantum

algorithm workloads, as determined by selecting the best outcome

from 10 transpiler runs, reported in Table 7. The Quantum Volume

results were further averaged through additional runs due to the

random nature of the algorithm.

3
A CNOT followed by a SWAP on the same qubit pair is equivalent to an iSWAP which
appears with non-negligible frequency, see Figure 5b at iSWAP.
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iSwap(𝜃, 𝜖1 (𝑡), 𝜖2 (𝑡))
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Figure 11: Decomposition template for CNOT into
√
iSWAP. A

solution is 𝜖1 = 3, 𝜖2 = 0 for all time steps.

SWAP

U

iSwap(𝜖1 (𝑡), 𝜖2 (𝑡))
U

√
iSwap

U

∈
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Figure 12: Decomposition template for SWAP into
√
iSWAP. A

suitable solution for the parallel-drives is 𝜖1 = 𝜋, 𝜖2 = 𝜋 for
all time steps. The interior set of 1Q gates is expected to be
unnecessary if derived more precisely.

Figure 13: Illustrating the 𝐾 = 2 coverage of 𝑛
√
iSWAP for 𝑛 ∈

{2, 4, 8} which can realize 𝑚
√
CNOT for𝑚 ∈ {1,2,4}.

Table 6: Gate infidelities, 1 − F𝑄 (D[1Q]=.25, Linear SLF)

𝑈𝑇 Baseline Optimized % Improved

CNOT 0.0035 0.0030 14.3

SWAP 0.0050 0.0045 9.98

E[Haar] 0.0038 0.0034 10.5

W(.47) 0.0043 0.0038 11.62

Table 7: Transpilation results (D[1Q]=.25, Linear SLF). Base-
line and Optimized columns report total circuit duration in
D[2Q]=1 normalized units. Duration, F𝑄 , and F𝑇 columns are
reported as the relative % improvement between the baseline
and optimized durations.

Benchmark Baseline Optimized Duration F𝑄 F𝑇
QV 133.0 118.4 11.22 1.50 27.0

VQE_L 25.75 21.5 16.50 0.43 7.04

GHZ 31.75 27.00 14.96 0.48 7.90

HLF 102.3 88.00 13.94 1.43 25.6

QFT 149.5 120.3 19.53 2.96 59.5

Adder 175.0 144.3 17.57 3.12 63.6

QAOA 197.8 147.8 25.25 5.12 122

VQE_F 333.3 286.8 13.95 4.76 110

Multiplier 1065.25 770.76 27.64 34.2 11000

The average relative reduction in duration is directly related

to our improvement method, while the relative path and total fi-

delity improvements depend on the baseline duration, mock gate

durations, and qubit lifetime. Shallower circuits inherently have

higher fidelities, and thus, their improvement potential is limited

compared to deeper circuits with lower fidelities. For instance, the

Quantum Volume improves from 0.875 to 0.889 in terms of path

fidelities (a 1.5% improvement), which, due to its exponential rela-

tionship in the number of qubits, results in an increase from 0.119 to

0.151 (a 21% improvement) in total fidelity. In contrast, the shortest

VQE_L algorithm path fidelities baseline of 0.975 only improve to

0.979 (0.4% improvement), leading to a total fidelity increase from

0.662 to 0.709 (6.6% improvement). Finally, our W(.47) metric pre-

dicts an average 11.6% reduction in duration. Our experimentally

demonstrated 17.8% actually outperforms this case due to additional

improvements to CNOTwhere the decomposition template’s exterior

1Q gates could be merged or eliminated.

5 CONCLUSION
In this paper, we formally characterized the optimal basis gate for a

parametric coupler under hardware speed limitations. The results

indicate that, despite the

√
iSWAP being close to optimal prior to

our analysis, it can still be improved by utilizing parallel 1Q gates.

This small improvement leads to a notable enhancement in fidelity

as the number of qubits increases. Our co-design evaluated uniform

Haar gates and circuit-based gate sets, finding that for realistic cost

functions, such as our experimentally-determined SNAIL-coupler

data, the

√
iSWAP gate performed the best in nearly all scenarios.

Initially, gate count scores favored the B gate, but after consid-
ering the cost of direct generation through multiple simultaneous

parametric drives, the

√
iSWAP gate was the most efficient. The in-

troduction of parallel-drive and related transpilation optimizations

reduced the gate duration for most basis gates and improved the

pulse time for the

√
iSWAP gate. The iSWAP family was uniquely en-

hanced through joint parallel-drive extended coverage sets, yielding

significant improvements in fidelity due to faster circuit execution.

In future work, we aim to expand our parallel-drive transpila-

tion flow to further enhance compilation strategies for quantum

algorithms and test them on various quantum systems with differ-

ing speed limit characterizations and dynamics. Moreover, detailed

studies of improvement of parallel-drive volume versus calibration

complexity for different quantum machine targets, including study-

ing calibration complexity, while expanding the flexibility to handle

continuously variable drive parameters, similar to optimal-control

theory methods, are important next steps.
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