
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

MIRAGE: Quantum Circuit Decomposition and

Routing Collaborative Design using Mirror Gates

Evan McKinney:, Michael Hatridge;, Alex K. Jones:
Department of Electrical and Computer Engineering:, Department of Physics and Astronomy;,

University of Pittsburgh

evm33@pitt.edu, hatridge@pitt.edu, akjones@pitt.edu

Abstract—Building efficient large-scale quantum computers is
a significant challenge due to limited qubit connectivities and
noisy hardware operations. Transpilation is critical to ensure that
quantum gates are on physically linked qubits, while minimizing
SWAP gates and simultaneously finding efficient decomposition
into native basis gates. The goal of this multifaceted optimization
step is typically to minimize circuit depth and to achieve the best
possible execution fidelity. In this work, we propose MIRAGE,
a collaborative design and transpilation approach to minimize
SWAP gates while improving decomposition using mirror gates.
Mirror gates utilize the same underlying physical interactions,
but when their outputs are reversed, they realize a different
or mirrored quantum operation. Given the recent attention to
?

iSWAP as a powerful basis gate with decomposition advantages
over CNOT, we show how systems that implement the iSWAP

family of gates can particularly benefit from mirror gates.
Further, MIRAGE uses mirror gates to reduce routing pressure
and reduce true circuit depth instead of just minimizing SWAPs.
We explore the benefits of decomposition for

?

iSWAP and
4
?

iSWAP using mirror gates, including both expanding Haar
coverage and conducting a detailed fault rate analysis trading off
circuit depth against approximate gate decomposition. We also
describe a novel greedy approach accepting mirror substitution at
different aggression levels within MIRAGE. For iSWAP systems
that use square-lattice topologies, MIRAGE provides an average
of 29.6% reduction in circuit depth by eliminating an average
of 59.9% SWAP gates, with a relative decrease in infidelity of
28%. MIRAGE also improves circuit depth and decreases relative
infidelity by 25% and 21% for CNOT-based and 23% and 19%
SYC-based machines, respectively.

I. INTRODUCTION

Quantum computers attempt to leverage superposition states

and entanglement between multiple quantum bits or qubits

to efficiently solve problems that are intractable for classical

computers. These operations between qubits form quantum

gates that collectively form quantum circuits. However, current

“noisy, intermediate scale quantum” (NISQ) machines face

limited connectivity between qubits and significant reliabil-

ity challenges from executing these quantum circuits. These

challenges are from many sources of noise including energy

decay, dephasing, and crosstalk among qubits [1]. Thus, the

holistic co-design goal for the execution of algorithms on

quantum machines is to minimize the depth of the circuit,

since the depth of the circuit is directly related to the fidelity

of the circuit through the cumulative effect of these internal

and external sources of noise [2], [3].

Different quantum machines use different basis gates gov-

erned, in part, by the type of physical interactions inherent to

1{2 1{2

q0

q1

=

RY

π{2
RZ

´π{2
RX

π

RX

π{2

RZ

π{2
RY

´π{2
RZ

´π

RZ

π{2

(a) CNOT decomposes into two
?

iSWAP gates

q0

q1

=

RZ

´π{2 H

H
RZ

´π{2

(b) CNOT+SWAP (CNS) also decomposes into 2
?

iSWAP gates

Fig. 1: Decomposition of CNOT, CNS into the iSWAP family

the quantum hardware. In superconducting NISQ machines,

IBM uses the cross-resonance basis gate, a gate that is locally

equivalent to a CNOT [4]. This choice is convenient since

many quantum algorithms are themselves written in the CNOT

basis. Other basis gates include the Google SYC gate and the

iSWAP gate, which is readily realizable by systems using

Transmon qubits [5]–[7]. The number of basis operations

required is determined by circuit decomposition. Moreover,

restricted quantum topologies require the use of SWAP gates

to move information between qubits. SWAP gates must also be

decomposed into basis gates, and generally require the most

basis gate operations to be realized.

The process to decompose, place gates, and route (i.e., insert

SWAP gates) on the physical machine is called transpilation.

Minimizing circuit depth in the transpiler is NP-hard [8], thus,

state-of-the-art techniques are largely heuristic, ranging from

stochastic methods to subgraph isomorphism algorithms [9].

Due to the complexity, a customary abstraction barrier is

inserted between routing and decomposition such that they

are computed independently. This is designed to make the

problems independent and tractable.

Unfortunately, this separation of concerns often disregards

scenarios where a certain choice of where a SWAP is inserted

can enhance quantum circuit compression, an advantage only

detectable post basis-translation [10]. One significant example

includes a two-qubit gate U immediately followed by a SWAP

on the same circuit wires, which together form U 1, denoted as

the mirror gate of U [11], [12].

A known mirror gate example is the relationship of CNOT

and iSWAP, shown in Fig. 1. CNOT appears ubiquitously in

quantum circuits due to its ability to create entangled states as

well as defining subroutines including singular value transfor-

mations, stabilizer measurements, and the decomposition of

multi-qubit gates [1]. Of course, as stated above, many su-

perconducting qubits natively produce photon-exchange gates

like iSWAP [6], [13], [14], or, in bosonic cases, ‘beam-

splitters’ [15]. Moreover, recent work showed that CNOT could

be decomposed into two
?
iSWAP gates (Fig. 1a) [16]. How-

ever, the CNOT mirror gate, CNS or CNOT` SWAP, is locally

equivalent to an iSWAP, i.e., two
?
iSWAPs (Fig. 1b) [17].

Thus, in the
?
iSWAP basis, CNOT and CNS have the same

circuit depth cost.

Thus, for iSWAP-based machines, the CNS provides “free”

data movement using iSWAP versus the directly decomposing

the regular CNOT gate using two
?
iSWAP gates. However,

the CNOT and iSWAP equivalency through CNS is only one,

albeit useful, example that can be generalized. All gates have

a mirror gate and both the standard and mirror gate can

be decomposed into any basis gate. Given that SWAP gates

are typically the most expensive gates to decompose in any

basis gate, using a mirror gate that eliminates a SWAP, even

a mirror with a higher decomposition cost, will result in

reduced circuit depth. For instance, consider that a CNOT

decomposition requires two SYC gates. If during transpilation,

a SWAP between the outputs is necessary for routing, this will

result in five SYC gates, two from CNOT and three from SWAP.

However, the mirror of CNOT, locally equivalent to iSWAP,

can be decomposed with three SYC gates, saving two gates.

Leveraging this property, we propose MIRAGE or Mirror-

decomposition Integrated Routing for Algorithm Gate Effi-

ciency. MIRAGE is a quantum co-design methodology based

on utilizing mirror gates to aid in both decomposition and

routing quantum circuits onto quantum machines. In MIRAGE

we consider a mirage SWAP to be a SWAP gate that can be ab-

sorbed into another computational gate during decomposition,

as in a CNS decomposing into iSWAP like in Fig. 1b.

Moreover, MIRAGE, unlike SABRE, breaks down the bar-

rier between routing and decomposition. MIRAGE considers

both the routing impact routing (adding SWAP gates) and the

decomposition depth when selecting between a gate or its

mirror. Like other heuristics, in MIRAGE starting conditions

and condition(s) when to select mirror gates are highly im-

pactful. Thus, we explore different aggression levels, which

use different thresholds on when to insert mirror gates.

In particular, we propose the following contributions:

1) We demonstrate and quantify the value of using mirror

gates for the iSWAP family of basis gates (including
n
?
iSWAP for n < 2, 3, 4 CNOT, and SYC basis gates.

2) We demonstrate mirror gates provide a similar de-

composition benefit to approximate decomposition and

that both approaches can be combined for additional

reduction of infidelity and improved Haar scores.

3) We develop the MIRAGE transpilation flow that lever-

ages mirror gates to benefit routing and decomposition.

q0

q1

U =

Ui

Basis

Ui`1

... Basis

Ui`k

Uj Uj`1 Uj`k

Fig. 2: Arbitrary basis gate decomposition template

4) We show when specifically optimizing for circuit depth

rather than minimizing SWAP gates can achieve a sig-

nificant improvement of 7.5%.

5) We conduct noise simulation and fidelity evaluation to

demonstrate to impact of MIRAGE on iSWAP fam-

ily,CNOT, and SYC basis gates.

Before we describe the details of our mirror gate analysis and

the MIRAGE transpilation approach, we first provide some

background in the next section.

II. BACKGROUND

Quantum transpilers 1⃝ decompose gates in quantum al-

gorithms onto the basis gate realizable in the target system,

2⃝ physically place the qubits and gates in the mapped

algorithm to locations on the target machine, and 3⃝ insert

SWAP gates into the circuit to route states between qubits.

A common method to decompose an arbitrary two-qubit

(2Q) gate, or unitary U in a basis gate uses Cartan’s de-

composition. In Cartan’s KAK decomposition a 2Q U is

factored by a series of 2Q basis gates combined with single-

qubit unitaries(1Q) [18]. This method allows for the effective

construction of any 2Q unitary operation as shown in Fig. 2

for a generalized form that requires k copies of the basis gate.

Placement and routing are important because quantum

topologies are restricted. While many machines use a square

lattice topology, as IBM machines scale, their routing flex-

ibility eventually decreases to a heavy-hex lattice, which is

currently standard [19]. This routing limitation is due to the

inherent crosstalk between qubits of the IBM cross-resonance

gate [20]. Thus, as topology flexibility reduces, the number of

SWAP gates required to implement circuits increases.

However, deep circuits work against circuit fidelity because

infidelity is quantitatively linked to the total execution time of

the quantum circuit. Specifically, the overall cost in time is de-

rived from the durations of individual 1Q and 2Q gates, along

with the number of necessary k applications of the 2Q basis

gate. As the duration, or depth, of a quantum circuit increases,

the system becomes increasingly susceptible to noise, such as

decoherence and dephasing, leading to a gradual degradation

of the stored quantum information [21]. Additionally, the

inclusion of SWAP operations contributes significantly to the

overall duration and, consequently, the infidelity of executing

a quantum circuit. Notably, for n
?
iSWAP basis gates, SWAP

operations demand the highest k values for decomposition,

thereby becoming the dominant source of error [16], [22].

Various transpilation optimization techniques have been

developed in recent years, such as finding gate commutation

rules [23], pulse level decomposition optimizations [24] and

eliminating gates for known pure-state inputs [25]. However,

The effectiveness of these solutions are highly context depen-

dent, emphasizing the importance of comparative evaluations

in diverse quantum computing scenarios. In the next section

we describe the impact of using mirror gates in decomposition.

III. MIRROR-GATE DECOMPOSITION

To understand the potential impact of decomposition using

mirror gates requires a method for articulating how this

process can contribute to circuit depth reduction. In this

section we compute the advantage on computational power

of different basis gates using mirror gates on unrestricted

topologies (e.g., all-to-all networks), and then we explore how

this maps to different restricted topologies. However, to define

and understand certain terms, methodologies, and metrics, we

start with some preliminaries discussed in the next section.

A. Preliminaries

In Section II we introduced the concept of decomposition

into basis gates using Cartan’s Decomposition. However, de-

composition into sequences only the target hardware’s basis

gates has been a study of considerable research that can be

divided into two categories: exact analytical decomposition

and approximate numerical decomposition. For 2Q unitary

targets, an optimal explicit set of rules has been derived for

CNOT [26] and much more recently for the
?
iSWAP [16],

which is a half rotation π{2 (half pulse duration) of a full π

rotation (full pulse) iSWAP [27].Generalizing decomposition

to an arbitrary-sized unitary target is an open problem. The

most efficient analytical method, Quantum Shannon Decom-

position (QSD), is still far from optimal. For instance, QSD

decompositions to CNOT gates are approximately twice as

expensive as the theoretical lower bound [28]. Moreover, QSD

and other methods such as Cosine-Sine Decomposition (CSD)

only work for controlled-unitary basis gates [29], [30].

In contrast, numerical decomposition methods are more

flexible than analytical decomposition and can closely ap-

proach the theoretical lower bounds of gate costs, even when

scaling up to 5Q decompositions [28], [31], [32]. Numerical

decomposition tunes the parameters of a circuit ansatz or start-

ing guess for the form of the decomposed circuit. The better

the form of the ansatz matches the optimal decomposition, the

better quality of numerical solution.

As in Cartan’s decomposition from Fig. 2, a reasonable

numerical approach sequentially alternates applications of the

1Q and 2Q gates, to form different choices of the ansatz in an

attempt to best match the form of an optimal or near-optimal

solution. The suitability of the ansatz is determined through

numerical optimization of the 1Q gates. The suitability of the

solution can be measured using a similarity approach such as

the Hilbert-Schmidt norm, which defines the distance between

the ansatz and the current unitary [33]. However, the use of

numerical methods becomes complex with an increase in the

number of qubits, due to an exponentially expanding parameter

space and the intricate generation of the ansatz.

To reason about decomposition, the requirements of a uni-

tary from the quantum algorithm and the expressible regions

(a) Polytope for CNOT (b) CNOT with mirror gates

(c) Polytope for
?

iSWAP (d)
?

iSWAP with mirror gates

(e) Polytope for SYC (f) SYC with mirror gates

Fig. 3: Coverage comparison between standard and mirror-

inclusive monodromy polytopes for the CNOT and
?
iSWAP

circuit ansatz with k < 2. Coverage under the standard

scenario is juxtaposed with the coverage when mirror gates

are allowed for mirror-inclusive polytopes.

within a given basis, a visual representation is the Weyl

chamber. The Weyl chamber is a geometric framework derived

from Lie Algebra that assigns a unique coordinate to each

2Q unitary operation, invariant under the application of 1Q

gates [34]. As 2Q gates represent a unique point in the

Weyl chamber, it is possible to describe regions of the Weyl

chamber reachable through application of multiple 2Q gates

using monodromy polytopes [35]. In particular, these polytopes

define the accessible regions of a circuit ansatz for a given

basis gate set. These regions, represented as convex polytopes,

encapsulate the space of achievable 2Q unitaries within a fixed

circuit depth. Examples of the Weyl chamber for the most

common basis gates are shown in Fig. 3 with regions reachable

by a circuit ansatz with k < 2 CNOT covering he class of

offerings by IBM, Rigetti, IonQ,
?
iSWAP representing the

iSWAP family of gates naturally realized in superconducting

systems, and SYC gates as deployed by Google are shown in

Figs. 3a, 3c, and 3e, respectively.

B. Mirror Gates

As discussed in Section I, a mirror gate refers to the

resulting gate formed by U composed with a SWAP. sThe

CNS gate from Fig. 1 is a special case of mirror gate that has

received considerable attention. It naturally appears in many

common circuits. For instance, the Toffoli and Fredkin 3Q

gates can be decomposed using CNOT and CNS gates, allowing

optimization at the gate-decomposition level [10], [17], [36].

The CNS gate also occurs naturally in stabilizer measurements

of error-correcting codes [17], [37], [38], in entanglement pu-

rification protocols [39], and QAOA circuits [40]–[42]. In QFT

circuits, the fractional controlled-phase gates can be replaced

by CNS gates, allowing the QFT circuit to be implemented

solely using iSWAP gates [43]. Moreover, the Diamond Gate,

a native 4Q gate, can be recast into CNS gates, which can be

used to build controlled-phase operations [44].

The transformation of an arbitrary U into its mirror U 1

has been described in the positive canonical basis, a conven-

tional representation for the Weyl Chamber coordinates, in

Eq. 1 [12], [45]. The two forms deal with the mirrored nature

of the Weyl chamber at the midpoint in the line between CNOT

and iSWAP.

pa1, b1, c1q <
#

pπ
4

` c, π
4

´ b, π
4

´ aq if a ď π
4

pπ
4

´ c, π
4

´ b, a ´ π
4

q else
(1)

In this work, we explore the use of monodromy polytopes

that are extended to include mirror gates. Since polytopes

denote the accessible regions within a fixed circuit depth, then

if mirroring is permitted, the polytope should also encompass

the mirror gates corresponding to every gate within the original

region. Thus, we seek to identify the set of unitaries that

are accessible, considering an allowance for permutations of

output wires, e.g., unitaries that permit a mirage SWAP gate.

This is particularly useful in scenarios where the order of the

output wires is inconsequential, such as in richly connected

topologies found in recently proposed superconducting qubit

architectures with local All-to-All (A2A) connectivity [46].

To construct a mirror-permitted polytope, we assign a cost

of zero to a SWAP operation, which serves to permute the order

of output qubits. Then it is possible to create two polytopes

that represent the portion of the Weyl Chamber reachable

using a circuit ansatz with a particular value of k. For the

CNOT,
?
iSWAP, and SYC gates, we depict the k < 2 case in

Figs. 3b, 3d, and 3f1 of the Weyl Chamber volume. In both

the standard polytope and the mirror-permitted polytope for

CNOT, the planar slices contribute to 0% volume coverage. In

contrast, the
?
iSWAP gate in its standard form covers 79.0%

of the Haar-weighted volume and increases to 94.4% when

mirror gates are utilized.

The mirror polytopes from Fig. 3 intersect. The CNOT

intersection is a line from CNOT to iSWAP, whereas there is

an appreciable region of overlap for
?
iSWAP. This is another

way to illustrate the increased computational power of the?
iSWAP basis, but it also suggests that perhaps smaller pulse

lengths of the iSWAP family of gates could be particularly

useful as we take advantage of mirror gates as shown in Fig. 4.

For instance, with 3
?
iSWAP with a π{3 or 1{3 pulse iSWAP

a substantial portion of the Weyl chamber is covered at k < 2

1The k < 1 case has 0% volume as these are only points in the chamber.
The k < 3 case is less interesting for these gates as both the CNOT and?
iSWAP basis gates cover 100% and SYC covers ą99%

(a)
3
?

iSWAP (b)
3
?

iSWAP with mirror gates

(c)
4
?

iSWAP (d)
4
?

iSWAP with mirror gates

Fig. 4: Coverage comparison between standard and mirror-

inclusive monodromy polytopes for the 3
?
iSWAP and

4
?
iSWAP circuit ansatz with k < 2.

(Fig. 4b). Even 4
?
iSWAP with a π{4 or 1{4 pulse iSWAP has

useful coverage (Fig. 4d) with the advantage that calibrating

such a gate can easily form a
?
iSWAP with two back-to-back

pulses like two back-to-back
?
iSWAP pulses form an iSWAP.

Interestingly, while CNOT is not reached, many of the

CPHASE gates are in both cases, which is potentially useful in

many algorithms. Furthermore, the maximum cost polytopes

decrease with mirror gates for these partial iSWAPs; for

example, using 4
?
iSWAP traditionally requires up to k < 6

depth (equivalent to k < 3 for
?
iSWAP), but with mirroring,

the depth never exceeds k < 4, which guarantees full Weyl

Chamber coverage at the equivalent of k < 2
?
iSWAPs. In

the next section we quantify this advantage and impact on

decomposition fidelity.

C. Computing Fidelity

One mechanism to quantify the Weyl chamber coverage of

a basis gate set is its Haar score, or Haar-average expected cir-

cuit cost. This computes the weighted average decomposition

cost for a uniformly distributed random 2Q unitary [47]. This

cost can be precisely computed using monodromy polytopes.

While previous work has shown that mirror gates can enhance

Haar scores, this has been done particularly in the context

of super-controlled basis gates [12], [45]. Moreover, Qiskit’s

transpiler implementations have focused on the XX basis to

simplify the computation [48].

Generalizing this concept to a broader set of operators

requires a function that maps a point outside the polytope

coverage region to the nearest point within that region. We use

a numerical decomposition method to optimize an ansatz to the

nearest point outside the coverage region in order to generalize

this mirror gates methodology to arbitrary basis gates. Using

this approach, we can examine the effects of mirror gates on

the Haar scores for n
?
iSWAP gates, among others.

Algorithm 1 Monte Carlo for approximate decomposition

Haar scores

1: procedure APPROXGATECOSTS(N)
2: TotalCost Ð 0

3: for i in rangepNq do

4: Target Ð HaarSample()
5: for each P in Set do

6: if P contains Target then

7: Compute ExactCost and FidThreshold
8: end if

9: end for

10: BestCost Ð ExactCost
11: for each P in CheaperSet do

12: Cost Ð OptimizepP, Target, F idThresholdq
13: if Cost ‰ None then

14: BestCost Ð minpBestCost, Costq
15: end if

16: end for

17: TotalCost Ð TotalCost ` BestCost
18: end for

19: return TotalCost{N
20: end procedure

Practical quantum computing can take advantage of ap-

proximate decompositions that may lead to higher overall

fidelity because they require fewer applications of the noisy

basis gate [31], [33], [46]. In other words the infidelity

from the approximation is less than the infidelity from the

increased noise resulting from the additional complexity of

circuit necessary to compute the exact result. To measure this,

we use an error model proposed in previous work [22], [49]

that identifies decoherence over time as the main source of

infidelity. This model defines the fidelity of a gate, FQ, in

terms of an exponential decay relative to the gate duration

and the qubit’s T1 relaxation rate as described in Eq. 2 [50].

FQ < e´Gate Duration{Qubit Lifetime (2)

Using this model, decomposition becomes an optimization

problem that balances circuit and decomposition fidelity. The

total fidelity, a product of these two fidelities, governs the

acceptance threshold for a given circuit. This decomposition

error tolerance threshold can be intuitively understood as

expanding the volume of each of the coverage sets [51].

To compute updated Haar scores that factor in both mirror

gates and approximate decompositions, we use Monte Carlo

sampling of unitary targets from the Haar distribution, and

verify decomposition fidelity using numerical decomposition.

First, we calculate circuit infidelity from the exact decompo-

sition solution before subsequently checking if any cheaper

polytopes (corresponding to higher fidelity circuits) can ap-

proximate the target circuit within the prescribed total fidelity

threshold. The overall process is encapsulated in Algorithm 1.

Presuming that iSWAP carries a normalized unit cost of

1.0 with fidelity of 99% [13] means fractional n
?
iSWAP gates,

which have shorter unit time costs have less decoherence time,

e.g.,
?
iSWAP with 0.5 [27]) have proportionately adjusted

fidelities. The final decomposition fidelity obtained through

approximate decomposition is recorded for each iteration.

10
0

10
1

10
2

10
3

Iteration

0.8

0.9

1.0

1.1

H
a
a
r
S
c
o
re

Exact

Approximate

Exact + Mirrors

Approximate + Mirrors

Fig. 5: Haar Score convergence for 4
?
iSWAP across 1000

iterations, for different optimization strategies. Horizontal lines

denote exact values derived through polytope integration.

Basis Gate Haar Fidelity Mirror Haar Mirror Fidelity
2
?
iSWAP 1.105 0.9890 1.029 0.9897

3
?
iSWAP 0.9907 0.9901 0.9545 0.9904

4
?
iSWAP 0.9599 0.9904 0.8997 0.9910

TABLE I: Haar score and corresponding average fidelities for

different basis gates, with and without mirror decomposition.
Basis Gate Haar Fidelity Mirror Haar Mirror Fidelity
2
?
iSWAP 1.031 0.9895 0.9950 0.9899

3
?
iSWAP 0.9433 0.9904 0.8900 0.9908

4
?
iSWAP 0.9165 0.9906 0.8453 0.9913

TABLE II: Haar score and corresponding average fidelities for

different basis gates, including approximate decompositions.

The Monte Carlo convergence for 4
?
iSWAP, subject to 1000

iterations, is illustrated in Fig. 5. It can be noted that the Exact

and Exact + Mirrors solutions converge successfully at the

theoretically computed values illustrated with dotted lines in

the figure. This gives confidence that the decomposition that

allows for approximate solutions also reasonably converges.

Noting, a lower Haar score is more desirable, the approximate

solution without mirrors nearly reaches the exact solution that

contains mirror gates. By combining both, approximation and

mirror gates, the Haar score improves from 0.9 to under 0.85.

The average total fidelities and Haar score for exact de-

composition, both with and without allowed mirror gates, are

recorded in Table I and are extended to allow for approximate

decomposition when it improves fidelity in Table II.

The observed fidelity improvements are particularly note-

worthy, given that they stem solely from compiler-level op-

timizations, without necessitating experimental adjustments

(i.e., a hardware change). For example, using
?
iSWAP as

the basis gate, the transition to approximate mirror de-

composition provides an 8.8% relative decrease in total

infidelity, and a 9.4% decrease when 4
?
iSWAP is used.

While smaller fractional basis gates can bolster Haar scores,

previous work reveals that as these basis fractions diminish,

Fig. 6: CPHASE gates and their mirrored counterparts in

pSWAP using the same color indicate corresponding gates. The

black dashed lines denote coverage of
?
iSWAP with k < 2.

Notably, the light blue points, which represent CNOT and CNS,

are the only gates from both groups contained by this region.

Basis Gate Haar CNOT CNS SWAP?
iSWAP 2.2 2 2 3

CNOT 3.0 1 2 3

SYC 3.0 2 3 3

TABLE III: Decomposition costs in terms of gate counts

the contribution of interleaving single-qubit gates becomes

increasingly significant. Furthermore, the primary target of

interest, CNOT, will not experience further improvements

with progressively smaller fractional gates iSWAP, indicating

a limit to this strategy [22]. Hence, this further supports?
iSWAP as a strong basis gate candidate.

D. Mirroring on Restricted Topologies

Although mirror gates will reduce gate decomposition costs

in all-to-all topologies, in practical topologies with less rich

connectivity, they may inadvertently add unfavorable qubit

permutations, which would need to be undone using a SWAP,

nullifying any benefit from the cheaper mirror decomposition.

A transpilation algorithm is essential to find optimal use of

mirror gates, taking into account subsequent gates to minimize

both gate decomposition costs and SWAP operations.

Quantum computing algorithms frequently involve

controlled-phase or CPHASE gates. Using Eq. 1, it is possible

to mirror the CPHASE family into the parametric-SWAP

family [52], depicted in Fig. 6 in the Weyl chamber. As seen

in the figure, the k < 2 coverage region for a
?
iSWAP basis is

delineated by bold dashed lines. This region encompasses the

CPHASE gates, but not all of the pSWAP gates. Intriguingly,

both the CNOT gate and its mirrored counterpart (as shown

in Fig. 1, such as CNS or iSWAP) reside within the k < 2

coverage area. Therefore, when mirroring, only for this pair

does the decomposition cost remain constant.

Substituting in a gate’s mirror to absorb required SWAP

gates is not restricted solely to the CNOT gate paired with

a iSWAP or
?
iSWAP basis. For the CPHASE family, even

if the pSWAP mirror has a increased decomposition cost

(k < 3), it remain a favorable substitution if it eliminates

a SWAP operation. As highlighted in Table III, mirroring a

CNOT in the quantum algorithm does not always maintain

the decomposition cost, especially when targeting other basis

gates, including CNOT or SYC. While
?
iSWAP is an exemplar

for decomposition efficiency, the primary objective remains

to eliminate SWAP operations, even if it introduces locally

elevated decomposition costs.

In the next section, we will detail our routing algorithm,

MIRAGE, which strategically uses mirror gates based on the

broader context of the quantum circuit. The goal is not only

to minimize costs by mirroring every possible gate, but to

strategically place and select the decomposition of the mirrors

considering downstream operations, topology constraints, and

the potential to absorb SWAP operations.

IV. MIRAGE

In this section, we introduce MIRAGE, a collaboratively

designed transpilation algorithm that collectively examines

SWAP insertion and decomposition. MIRAGE can exploit the

intrinsic efficiency of
?
iSWAP gates, which decomposes both

CNOT and CNS at the same cost, an advantage that is not

available to the traditional CNOT basis (Fig. 1). However,

conceptually, MIRAGE can be used for any basis gate. Using

monodromy polytopes and mirror and approximation based

decomposition discussed in Section III, MIRAGE can select

between gates and their mirror form to determine the appro-

priate choice for implementation in the circuit.

MIRAGE is a heuristic approach with greedy characteristics

similar to the prior state-of-the-art transpilation passes, such as

SABRE [53]. However, unlike previous approaches, MIRAGE

considers routing and decomposition cost when determining

both SWAP placement and use of mirror gates. However,

because MIRAGE remains fundamentally greedy, we consider

several strategies that allow MIRAGE to avoid getting trapped

into poorly performing situations, such as finding a local

minimum far from the global optimum.

First, when considering a gate or SWAP choice, we evaluate

the potential impact on circuit depth rather than solely SWAP

depth as is considered in prior work. Second, we propose

aggression levels which use different circuit depth thresholds

to determine whether to insert a mirror gate. MIRAGE is

implemented using the SABRE workflow included in Qiskit

with several key modifications. We describe these next.

A. MIRAGE Workflow Details

The SABRE workflow provides several key data structures

and a optimization flow that we inherit into MIRAGE. The

circuit is represented as a directed acyclic graph (DAG). The

gate nodes from the DAG are organized into a front layer, an

execution layer, and a mapped layer. The mapped layer holds

the portion of the DAG that has be mapped to the hardware.

Front Layer Execute Layer Mapped DAG
Intermediate

Layer

Find and insert

best SWAP

Is empty?

Repeat to completion

Node is resolved?

Edge exists? Node is resolved?

Input Circuit DAG

Static-SWAP

Select U or mirror U'

or

Accept Mirror Gate?

Fig. 7: MIRAGE Workflow

The front layer holds nodes with resolved dependencies, while

the execution layer holds nodes that can be executed based on

the current physical qubit layout. The fully processed nodes

are transferred to the mapped layer into the mapped DAG.

Gates move sequentially from the unmapped DAG to the

front layer to the mapped layer, a process guided by the

resolution of their predecessors. In other words, a gate can

only progress to a stage once all its predecessor nodes have

advanced past that stage. When the execution layer is empty,

but unresolved gates remain in the front layer, SABRE selects

some number of SWAP gates that are inserted into the execute

layer with a goal of minimizing the heuristic cost function,

designed to minimize topological distance between upcoming

qubits and promote parallelism. This parallelism comes from

selecting SWAP gates that can be executed at the same time

to concurrently move data towards both inputs of the gate

being mapped. Once sufficient SWAP gates are introduced,

this stalled node in the front layer advances. After all gates

in the front layer advance a complete mapping of all gates

is accomplished in the mapped DAG. SABRE runs multiple

times with different initial qubit mappings (seeds), which can

dramatically change the results.

In MIRAGE we retain the front, execute, and mapped layers.

However, we add an intermediate layer between the execute

and mapped layer as shown in Fig. 7. The intermediate layer

is used to handle every 2Q gate from the algorithm leaving the

execution layer. The transpiler pass evaluates whether to accept

the mirror gate in its place, then ultimately sends the chosen

operation to the mapped layer. Note: in the original SABRE

workflow, these 2Q gates are not decomposed to the basis gate

of the target machine. However, in MIRAGE, while the gate

is not decomposed, a decomposition estimate is considered in

the intermediate layer and/or execution layer to improve the

estimation of mirror or SWAP choices over pure topological

distance and gate depth.

The impact of MIRAGE is illustrated in Fig. 8 targeting

a
?
iSWAP machine considering a fully entangling ansatz—a

common structure in quantum machine learning and optimiza-

tion algorithms (Fig. 8a). When this circuit is mapped to a

line topology and optimized using Qiskit at level 3, the circuit

depth amounts to 16
?
iSWAP basis gates using 3 SWAP gates

(Fig. 8b). To interpret this pulse count, with
?
iSWAP basis

q0

q1

q2

q3

(a) TwoLocal (full), 4 qubits

q2

q0

q1

q3

2 4 7 9 11 14 16

(b) TwoLocal (full), 4-qubit line topology, Qiskit level 3

q1

q0

q2

q3

U
0,0, ´π

2

U
π

2
,0,π

U
0,0, ´π

2

U
0,0, ´π

2

U
0,0, ´π

2

U
π

2
,0,π

U
π

2
, ´π

2
,π

U
0,0, ´π

2

U
0,0, ´π

2

U
π

2
, ´π

2
,π

2 4 6 8 10

(c) TwoLocal (full), 4-qubit line topology, MIRAGE

Fig. 8: Comparison of TwoLocal circuits

gates it requires k < 2 to implement a CNOT and k < 3 to

implement a SWAP. Note, between pulses 7 and 9, the CNS

gate between q2 and q3 can be realized as an iSWAP which

is equivalent to
?
iSWAP with k < 2.

In contrast, using MIRAGE, the SWAPs are better absorbed

into gates. By inverting the first CNOT the next CNOT is

between q1 and q2 eliminating a SWAP. Replacing that CNOT

with a mirror sets up doing the third and fourth CNOT in

parallel because both gates are independent and both are

one step away. Ultimately, MIRAGE finds the same circuit

functionality with only 10
?
iSWAP gates and no SWAP gates,

underscoring the potential optimization (Fig. 8c).

B. Post-Selection Metric

An important advancement of MIRAGE is the selection

metric to choose the optimal routing among multiple inde-

pendent trials. The original SABRE implementation relies on

a decay factor to promote parallelism, discouraging the use of

SWAP gates on qubits that have recently undergone a SWAP.

However, when performing multiple routing trials, the tracked

metric is the total number of induced gates SWAP, which is less

closely related to the depth of the circuit [53]. This disconnect

arises because the transpiler cannot reason about depth until

it performs decomposition into the basis gate.

MIRAGE, addresses this by enabling the estimation of

circuit depth without the need for actual decomposition. This

is accomplished using monodromy polytopes to rapidly assess

circuit costs. The minimum-cost circuit polytope that contains

the unitary target is identified as discussed in Section III. We

iterate the coverage set in until we find a coverage region

containing the edge’s 2Q gate. Thus, the depth metric is

calculated using the longest DAG path with a custom weight

function assigned to decomposition cost. Total gate counts are

calculated similarly, summed over all nodes.

While exact methods for decomposing into CNOT and?
iSWAP exist, MIRAGE is designed to operate independently

of any specific decomposition strategy. The actual decompo-

sition can be specified later using either exact or numerical

methods. While we continue to use decay when choosing

individual SWAPs, the post-selection process is about choosing

between routes across the independent trials.

C. Overcoming Local Minimas

Unfortunately, even with the best possible lookaheads,

greedy algorithms have a propensity to get stuck in local

minima that can be quite a bit worse than the optimal solution.

We address the challenge of local minima that can obstruct the

optimization process by noting that the algorithm’s sensitivity

to initial placement and cost decision making can lead to

certain cases where the initial layout enters a non-converging

cycle, as shown in Fig. 9.

In this example, a subset of the circuit from Fig. 8a, the

qubits are reordered, so that the CNOT between q0 and q3,

denoted as CNOT0

3
requires no SWAPs. The best choice in the

forward pass is to SWAP2

0
on the top qubits while executing

CNOT1

3
using the bottom qubits. Finally, CNOT2

3
executes,

requiring a depth of seven pulses. However, the minimal

solution requires two SWAP gates be added to further reorder

the qubits. While one SWAP can be combined into a CNS0

3

gate, because a SWAP1

0
is necessary, the total pulses becomes

nine. However, in the backwards pass with this new ordering,

this leads to the solution on the bottom right of Fig. 9, such

that the CNS1

3
replaces the middle gate, creating a solution with

only six pulses, while the local minima got stuck at seven.

2

0

3

0

1

2

0

3

1

2

0

3

1

2

1

3

0

2

0

3

1

Forwards

3

1

2

0

Backwards

3

1

Best

D
e

p
th

: 7
D

e
p

th
: 9

D
e

p
th

: 7
D

e
p

th
: 6

Input

0

1

2

3

0

2

3

1

2

3

1

0

2

1

3

0

Fig. 9: Two routing trials from the same initial layout demon-

strate the challenges of local decision-making. The top route,

despite an initial optimal choice, ends in a local minima, while

the bottom, through an initial sub-optimal choice, is the best

solution.

To address this, we use a technique described as mirror ag-

gression settings to dictate the likelihood of accepting a mirror

gate decomposition in the intermediate layer. Specifically, we

define four aggression levels: level 0, a mirror gate is never

accepted; level 1, a mirror gate is accepted if it lowers the cost;

level 2, a mirror gate is accepted if it either lowers or maintains

the cost; and level 3, a mirror gate is always accepted.

In practice, different circuits perform well with different

aggression levels. To evaluate the impact of fixed aggression

settings, we conducted tests using each level of aggression

(Fig. 10). We selected a subset of circuits to demonstrate that

no single strategy is universally optimal. The results support

the use of a mix of aggression settings, allowing MIRAGE to

handle a wide range of circuits and topologies. Note, Mirage-

a0 results in essentially the same configuration as Qiskit, but

Fig. 10 shows slight advantage to Qiskit by having more seed

passes compared to Mirage-a0. Based on these representative

circuit trials, we distribute the routing trials (seeds) across

aggressions as follows: 5% at level 0, 45% at level 1, 45%

at level 2, and 5% at level 3. This means that all MIRAGE

runs attempt mapping at each aggression level with effort

(number of seeds) to each aggression level as dictated by

the sensitivity study in Fig. 10. This approach, with fewer

attempts on the edge cases (levels 0 and 3) and the majority

of attempts (effort) on the metric-based choices improves the

effectiveness of various circuits from different arbitrary initial

layouts (seeds).

Algorithm 2 describes the final MIRAGE algorithm that

combines variable aggression settings. This approach opti-

mizes compression and reduces the number of layout trials

Fig. 10: Results of independent configuration trials with dif-

ferent aggression settings.

Algorithm 2 Mirror Gate Acceptance Function

1: Input: cost current, cost trial, aggression
2: Output: Boolean accept mirror gate
3: if aggression = 0 then

4: return False
5: else if aggression = 1 and cost trial <cost current then

6: return True
7: else if aggression = 2 and cost trial ď cost current then

8: return True
9: else if aggression = 3 then

10: return True
11: end if

12: return False

required. Future work could explore further parameter tuning.

V. EXPERIMENTAL SETUP

To evaluate the performance and effectiveness of MIRAGE

we implemented the MIRAGE algorithm in qiskit-terra

0.24.2. To compute monodromy polytopes, we used the

Qiskit-Extension tool, monodromy [35] which we adapted to

compute cost-weighted integration for both the standard and

mirror-permitted coverage polytopes.

Our setup does not exceed the parameters in the default

SABRE workflow: a lookahead window size (|E|) of 20, a

window weight (WE) of 0.5, and a decay rate of 0.001, with

a reset after every five steps or gate mapping. We addressed a

limitation in Qiskit’s SABRELayout, which omits independent

layout trials when a custom routing pass, like MIRAGE,

is specified. We modified SABRELayout to adhere to the

original SABRE configuration when MIRAGE is specified: 20

independent layout trials, each with 4 forward and backward

routing passes, each iteration routed independently 20 times.

To establish a baseline, we added the CNOT and SWAP

decomposition rules to the session equivalence library, as

Qiskit lacks support for
?
iSWAP. However, this was only

done for final circuit output as our MIRAGE cost func-

tions consolidate all blocks before calculating costs using

monodromy. Moreover, for decomposition to an arbitrary

basis, monodromy identifies the minimum cost polytope that

contains a target gate in its region. The resulting circuit ansatz

formed from the basis gates is then optimized by fitting the

1Q gate parameters using a numerical optimizer.

When executing the transpiler, the pass manager conducts

input cleaning, which includes unrolling gates with more than

two qubits, removing SWAPs, barriers, and identity gates. We

consolidate all consecutive unitary blocks, ensuring MIRAGE

operates solely on 2Q gates. We then check if an implementa-

tion with no SWAP gates can be found using VF2Layout. We

invoke MIRAGE (or SABRE) if no SWAP gate free placement

can be found. Subsequently, we incorporate Qiskit’s remaining

optimizations and reconsolidate the circuit.

Lastly, for speed comparisons, we compared MIRAGE to

the most recent version of SABRE in Python. While a version

of SABRE has been ported to Rust, this made it impractical

to determine the impact of MIRAGE on runtime.

We evaluate MIRAGE’s performance using circuits from

QASMBench [54] and MQTBench [55]. These benchmarks

are selected for their relevance to NISQ devices and their need

for ą 0 SWAP gates. This is crucial because our transpiler,

like the stock Qiskit implementation, checks using VF2Layout

if an optimal mapping exists that requires no SWAP gates.

Consequently, for circuits like GHZ or any linear ansatz VQA,

both transpilers would behave identically, and neither SABRE

nor MIRAGE would be invoked.

Name Qubits 2Q Gates Class

wstate [54] 27 52 Entanglement

qftentangled [55] 16 279 Hidden Subgroup

qpeexact [55] 16 261 Hidden Subgroup

ae [55] 16 240 Hidden Subgroup

qft [55] 18 306 Hidden Subgroup

bv [54] 30 18 Hidden Subgroup

multiplier [54] 15 246 Arithmetic

bigadder [54] 18 130 Arithmetic

qec9xz [54] 17 32 EC

seca [54] 11 84 EC

qram [54] 20 92 Memory

sat [54] 11 252 QML

portfolioqaoa [55] 16 720 QML

knn [54] 25 96 QML

swap test [54] 25 96 QML

TABLE IV: Selected circuit benchmarks

We measure transpiler success using circuit costs via nor-

malized critical path durations. In our convention, an iSWAP

gate has a time cost of 1.0, and a
?
iSWAP has 0.5, as

defined in Section III. We report the geometric mean of circuit

depth across 5 instances for each experiment. Our focus on

reducing circuit depth, compared to Qiskit SABRE, under-

scores MIRAGE’s utility as a straightforward yet significant

enhancement to the existing Qiskit routing stage.

VI. RESULTS

In this section we examine the efficiency of MIRAGE. First

we explore the impact of circuit depth comparison against

number of gates, then we examine the effectiveness of the

MIRAGE optimization for different common quantum ma-

chine topologies, and finally we consider the runtime impact

of MIRAGE against prior work. Note, all experiments use the

aggression level balancing discussed in Section IV-C.

Qiskit MIRAGE-Swaps MIRAGE-Depth

qe
c9
xz

n1
7

se
ca

n1
1

sw
ap

te
st

n2
5

kn
n
n2

5

qr
am

n2
0

qf
t n

18

qf
te
nt
an

gle
d
n1

6

ae
n1

6

bi
ga
dd

er
n1

8

qp
ee
xa

ct
n1

6

mul
tip

lie
r n

15

po
rtf

oli
oq

ao
a
n1

6

sa
t n

11

0

80

160

240

A
v
e
ra
g
e
D
e
p
th

Fig. 11: Average circuit depth comparison for Qiskit, Mirage-

SWAPs, and Mirage-Depth post-selection strategies.

A. Impact of Depth Comparison Metric

Previous transpilers tracked the circuit depth in terms of

number of SWAP gates added to the circuit. MIRAGE improves

on this by using a circuit depth metric to determine the best

result as discussed in Section IV-B. In Fig. 11 we compared

to the stock Qiskit SABRE, which determines the best result

in of the fewest SWAP gates added, with MIRAGE using the

same metric as well as our circuit depth cost function that

more efficiently promotes parallelism. Our results indicate that

both methods using MIRAGE find an improvement, due to

inclusion of mirror gates. However, when we optimize for

minimum swaps, we find an average depth reduction of 24.1%,

and when we optimize for depth, we get an additional 7.5%

relative benefit, leading to a total average depth reduction

of 29.5%. Interestingly, the total number of gates is mostly

unchanged (an increase of 0.4%), indicating that changing the

selection metric is responsible for finding more parallelism.

B. MIRAGE for Common Quantum Machine Topologies

We evaluated MIRAGE using
?
iSWAP gates targeting two

production quantum machine topologies: 57Q Heavy-Hex and

6x6 Square-Lattice, tracking: critical path depthand number

of SWAP gates. We report both an average and circuit size

weighted average improvement. The results of MIRAGE on

quantum circuit routing are shown in Fig. 12.

For Heavy-Hex, we observed an average and weighted

average decrease of 31.2% and 33.4%, respectively, in

circuit depth (Fig. 12a). The largest decrease in depth was

‘qpeexact n16’ with a mirror gate acceptance rate of 95%,

while the least was ‘knn n25’ with a mirror gate acceptance

rate of only 43%. The average decrease of SWAPs was

56.2%, or a weighted average decrease of 75.8%. The

greatest decrease in SWAP gates was ‘portfolioqaoa n16’

with a mirror gate acceptance rate of 99%, while the worst

was‘qram n20‘. For the Square-Lattice topology, we ob-

served an average and weighted average decrease of 30.0%

and 32.1%, respectively in circuit depth (Fig.12b). The

largest decrease in depth was ’portfolioqaoa n16’ with a

mirror gate acceptance rate of 100%, while the least was

’swap test n25’ with a mirror gate acceptance rate of only

Qiskit MIRAGE

Circuit Duration ns Fidelity Duration ns Fidelity

ae n8 [55] 5800 0.274 3925 0.362

dj n8 [55] 1950 0.756 1425 0.806

fredkin n3 [54] 1500 0.797 1000 0.855

qft n4 [55] 1300 0.813 1000 0.842

qftentangled n8 [55] 7975 0.107 7300 0.119

qpeexact n8 [55] 7600 0.208 6925 0.200

toffoli n3 [54] 1000 0.871 750 0.894

TABLE V: Circuit depth and noise simulation fidelity

34%. The average decrease of SWAP gates was 59.9%, or

a weighted average decrease of 77.6%. The greatest decrease

in SWAP gates was ’seca n11’ with a mirror gate acceptance

rate of 28%, while the worst was again ’qram n20’.

C. MIRAGE for CNOT and SYC Basis Gates

We assessed MIRAGE for the CNOT gate on a Heavy-Hex

topology (typical for IBM machines) and the SYC gate on a

Square-Lattice topology (used by Google). Our results, in

Fig.13, show that MIRAGE still provides significant bene-

fits with the CNOT Heavy-Hex architecture seeing depth re-

duction of 25.5% and SYC Square-Lattice achieving 23.6%

reduction. A few benchmarks with CNOT and SYC showed

minor degredations using MIRAGE, e.g., multiplier n15 on

the CNOT Heavy-Hex architecture. This is due to differing

decomposition costs for mirror gates (Section III-D). The cost

to decompose CNS using CNOT or SYC means each mirror

must offset the costs of SWAP gates which MIRAGE cannot

guarantee. Nonetheless, the overall advantage is substantial.

D. Noisy Fidelity Simulation

To quantify circuit fidelity we calculate the final circuit

state fidelity FT by comparing the noiseless simulation state

ρ1 with the noisy simulation state ρ2 as described in Eq. 3.

For noisy simulations, we utilized the Qiskit Aer simulator,

incorporating both thermal relaxation and depolarizing error

channels. Specifically, we set T1 < T2 < 80 µs, with a single-

qubit gate time of 25 ns and a two-qubit iSWAP gate time

of 100 ns based on calculations from the SNAIL experimental

prototype [13], [56]. We show results in Table V for smaller

circuits implemented with Qiskit and MIRAGE on an 8-qubit

machine with a line topology. The fidelity improvements are

evident and correlate to the circuit depth improvements.

F pρ1, ρ2q<Trr
a?

ρ1ρ2
?
ρ1s2 (3) FT <e

´NDC

´

1

T1
`

1

T2

¯

(4)
To scale to larger circuits, we estimate fidelity using Eq. 4,

based on the same principle from Eq. 2, but expanded to

consider T1 and T2 for all N qubits for the duration of the

circuit DC [49]. Using the same circuit parameters for 1Q,

and 2Q gate times; however, we choose near state-of-the-art

T1 and T2 values scaled by a factor of 20 to work with more

reasonable fidelity outcomes for the larger circuits.

Our results, depicted in Fig. 14, highlight the average rela-

tive change in infidelity for different configurations. MIRAGE

with
?
iSWAP on Heavy-Hex shows a pronounced average

decrease in relative infidelity of approximately 28.0%. In

contrast, CNOT on Heavy-Hex achieves an average decrease

Qiskit-
√

iSWAP Mirage-
√

iSWAP

qe
c9
xz

n1
7

se
ca

n1
1

kn
n
n2

5

sw
ap

te
st

n2
5

qr
am

n2
0

qf
t n

18

qf
te
nt
an

gle
d
n1

6

ae
n1

6

bi
ga
dd

er
n1

8

qp
ee
xa

ct
n1

6

mul
tip

lie
r n

15

po
rtf

oli
oq

ao
a
n1

6

sa
t n

11

0

80

160

240

A
v
e
ra
g
e
D
e
p
th

(a) Critical path depth for Heavy-Hex topology (b) Critical path depth for Square-Lattice topology

Fig. 12: Optimization results with
?
iSWAP basis gates, comparing between Qiskit-SABRE and MIRAGE.

(a) Critical path depth for Heavy-Hex topology (b) Critical path depth for Square-Lattice topology

Fig. 13: Optimization results with CNOT and SYC basis gates,comparing between Qiskit-SABRE and MIRAGE.

in relative infidelity of about 21.1%, while SYC on a lattice

topology records an average reduction of roughly 19.7%. The

pronounced benefit observed for
?
iSWAP underscores the

efficacy of our transpilation optimization for this particular

basis gate. As above, if the SWAP is not eliminated in the

routing, the decomposition cost can increase making the

optimization more of a possible tradeoff than in the CNOT

vs. CNS case for
?
iSWAP. The topology certainly can play a

role in the fidelity benefits as seen in the larger improvement

for fidelity on Heavy-Hex than Square-Lattice for
?
iSWAP,

however, the circuit and target basis gate also have a key role,

noting that SYC on Square-Lattice, even with some negative

outliers, out improves (on average)
?
iSWAP on Heavy-Hex.

E. Implementation Improvements: Caching and Parallelism

To ensure a reasonable runtime of MIRAGE we profiled

the tool and address the computational bottlenecks associated

with the intermediate representation of the DAG nodes using

coordinates. Profiling revealed that the conversion of a unitary

to a coordinate and the UnitaryGate constructor were

among the most expensive operations. To mitigate these issues,

we introduced caching and parallelism into our approach.

Fig. 14: Comparison of fidelity improvements from MIRAGE

against Qiskit, for different basis gates and topologies.

In the intermediate layer, when a mirror gate is accepted,

we replace the entire DAG node with a new unitary, rather

than appending a gate that would disrupt consolidation. To

efficiently build this unitary, we removed the costly calls to

is_unitary and is_identity in the UnitaryGate

constructor, as we know that mirroring will always preserve

unitarity. Finally, instead of computing the new mirror gate’s

coordinate, we use an equation to convert the original co-

ordinate to the mirror coordinate (Eq. 1). Every SWAP gate

added by MIRAGE comes with the SWAP coordinate manually

annotated to the node.

To further speed up conversion from unitary to coordinates,

we rewrote the ConsolidateBlocksocks pass. Rather

than multiplying all the operators into a new unitary, we first

skip the exterior 1Q gates (since these will not change the

coordinate), use that unitary as the cache key, annotate the

block, and then multiply in the remaining gates (Fig. 15). This

approach increases cache hits by removing the 1Q unitaries

that would otherwise lead to different unitaries and ensures

that each unitary has an annotated coordinate, eliminating the

need for repeated calculations.

Additionally, we introduced a Least Recently Used (LRU)

software cache, acting as a lookup table for each circuit poly-

tope. This significantly diminishes the time required to query

the same coordinates multiple times. Through this cache, each

coordinate is ensured to be queried only once, thereby slashing

the count of resource-intensive iterations over polytopes and

calls to the has_element function. In comparison, our

method outperforms Qiskit’s Python transpiler notably. For

instance, when tested on a 64Q QFT circuit, MIRAGE

executed 47.9% faster than Qiskit. The code’s speed directly

impacts the number of individual trials, which subsequently in-

fluences the transpiler’s solution quality. Therefore, MIRAGE

can effectively optimize circuit depth across various circuit

topologies by merely leveraging mirror gates efficiently, all

without increasing the transpilation runtime.

VII. RELATED WORK

Additionally, several modifications have been proposed

to further improve the effectiveness of SABRE. The most

relevent are “Not all Swaps have the Same Cost” (NASSC),

which refines the SABRE SWAP selection heuristic to select

the most efficient SWAP by additionally considering poten-

tial CNOT gate cancellations due to encoded commutation

rules [57]. The transpiler analyzes the set of adjacent nodes

for each SWAP candidate to identify potential cancellations.

For example, it considers a SWAP to be three inverted CNOTs

and it looks for cases where those CNOTs can be commuted

in the circuit such that the first and last CNOT from two SWAP

gates can be cancelled. Like MIRAGE, NASSC does consider

decomposition, but it is a very specific optimization to CNOT,

while MIRAGE is much more general to the basis gate.

Permutation-aware Synthesis and Permutation-aware Map-

ping (PAS+PAM) searches for alternative decompositions of

unitary blocks before committing any particular node to the

mapped DAG [58]. PAS+PAM considers the potential for

synthesizing an equivalent operation with permuted input

and output qubits, which may reduce routing overhead. This

is similar to MIRAGE. However, PAS+PAM, like NASSC,

focuses on CNOT basis gates whereas MIRAGE is general

to any basis gate. While PAS+PAM attempts to fully link

Cache
DAG

Node

Unitary to

Coordinate

No Check

Unitary

(a) Caching mechanism for building unitary Weyl coordinates

Qiskit-
√

iSWAP Mirage-
√

iSWAP

qf
t n

16

qf
t n

24

qf
t n

32

qf
t n

48

qf
t n

64

0

50

100

150

200

T
o
ta
l
R
u
n
ti
m
e
(s
)

(b) Measured runtimes of Quantum Fourier Transform

Fig. 15: MIRAGE performance enhancements

decomposition and routing, MIRAGE uses decomposition

information determined through monodromy polytopes, again

which is agnostic to the type of basis gate, to track circuit

depth and promote gate combination while routing to maintain

an efficient runtime rather than fully combining the steps.

Moreover, MIRAGE reports ą30% reduction in circuit depth

versus 18% reported by PAS+PAM to the same Qiskit baseline.

VIII. CONCLUSION

In this work, we have proposed MIRAGE, a strategy that

integrates routing and decomposition in the transpiler, breaking

the traditional abstraction of routing and decomposition. Our

experiments show tangible improvements: For the Heavy-Hex

topology, there was an average reduction of 31.19% in circuit

depth, 16.97% decrease in total gate count, accomplished by

a noteworthy 56.19% decrease of SWAPs. Meanwhile, the

Square-Lattice topology experienced an average decrease of

29.58% in circuit depth and a 59.86% reduction in SWAP

gates resulting in a reduction of infidelity of 28%. Applying

MIRAGE to CNOT and SYC basis gates demonstrated circuit

depth reduction of 25.5% and 23.6%, respectively, resulting

in an infidelity reduction of 21.1% and 19.7%, respectively.

Future work aims to integrate MIRAGE directly into the

transpiler pipeline using plugins. This allows us to select

the routing trial that minimizes the estimated circuit depth,

making each iteration of our program more geared towards

depth reduction. Lastly, finding approximate decompositions

without Monte Carlo methods could be done using quadratic

programming or affine subspace projections to accelerate our

approach for other basis gates.

IX. SOFTWARE AVAILABILITY

MIRAGE is open source and available online through

github and will be provided for artifact evaluation.

ACKNOWLEDGEMENTS

This work is partially supported by The Charles E. Kaufman

Foundation of The Pittsburgh Foundation under New Initiative

Award KA2022-129519 and the University of Pittsburgh via

a SEEDER grant.

REFERENCES

[1] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[2] J. Emerson, R. Alicki, and K. Życzkowski, “Scalable noise estimation
with random unitary operators,” Journal of Optics B: Quantum and

Semiclassical Optics, vol. 7, no. 10, p. S347, 2005.

[3] Y. Y. Gao, M. A. Rol, S. Touzard, and C. Wang, “Practical guide for
building superconducting quantum devices,” PRX Quantum, vol. 2, no. 4,
p. 040202, 2021.

[4] C. Rigetti and M. Devoret, “Fully microwave-tunable universal gates
in superconducting qubits with linear couplings and fixed transition
frequencies,” Physical Review B, vol. 81, no. 13, p. 134507, 2010.

[5] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[6] Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kannan, M. Kjaer-
gaard, A. Greene, G. O. Samach, C. McNally, D. Kim et al., “Realization
of high-fidelity cz and z z-free iswap gates with a tunable coupler,”
Physical Review X, vol. 11, no. 2, p. 021058, 2021.

[7] M. Roth, M. Ganzhorn, N. Moll, S. Filipp, G. Salis, and S. Schmidt,
“Analysis of a parametrically driven exchange-type gate and a two-
photon excitation gate between superconducting qubits,” Physical Re-

view A, vol. 96, no. 6, p. 062323, 2017.

[8] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons,
and S. Sivarajah, “On the qubit routing problem,” arXiv preprint

arXiv:1902.08091, 2019.

[9] G. Nannicini, L. S. Bishop, O. Günlük, and P. Jurcevic, “Optimal qubit
assignment and routing via integer programming,” ACM Transactions

on Quantum Computing, vol. 4, no. 1, pp. 1–31, 2022.

[10] J. Liu, M. Bowman, P. Gokhale, S. Dangwal, J. Larson, F. T. Chong, and
P. D. Hovland, “Qcontext: Context-aware decomposition for quantum
gates,” arXiv preprint arXiv:2302.02003, 2023.

[11] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin,
M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa et al.,
“Demonstration of quantum volume 64 on a superconducting quantum
computing system,” Quantum Science and Technology, vol. 6, no. 2, p.
025020, 2021.

[12] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M.
Gambetta, “Validating quantum computers using randomized model
circuits,” Physical Review A, vol. 100, no. 3, p. 032328, 2019.

[13] C. Zhou, P. Lu, M. Praquin, T.-C. Chien, R. Kaufman, X. Cao, M. Xia,
R. S. Mong, W. Pfaff, D. Pekker et al., “Realizing all-to-all couplings
among detachable quantum modules using a microwave quantum state
router,” npj Quantum Information, vol. 9, no. 1, p. 54, 2023.

[14] P. Mundada, G. Zhang, T. Hazard, and A. Houck, “Suppression of qubit
crosstalk in a tunable coupling superconducting circuit,” Physical Review

Applied, vol. 12, no. 5, p. 054023, 2019.

[15] Y. Lu, A. Maiti, J. W. Garmon, S. Ganjam, Y. Zhang, J. Claes,
L. Frunzio, S. Girvin, and R. J. Schoelkopf, “A high-fidelity mi-
crowave beamsplitter with a parity-protected converter,” arXiv preprint

arXiv:2303.00959, 2023.

[16] C. Huang, T. Wang, F. Wu, D. Ding, Q. Ye, L. Kong, F. Zhang, X. Ni,
Z. Song, Y. Shi et al., “Quantum instruction set design for performance,”
Physical Review Letters, vol. 130, no. 7, p. 070601, 2023.

[17] N. Schuch and J. Siewert, “Natural two-qubit gate for quantum compu-
tation using the xy interaction,” Physical Review A, vol. 67, no. 3, p.
032301, 2003.

[18] R. R. Tucci, “An introduction to cartan’s kak decomposition for qc
programmers,” arXiv preprint quant-ph/0507171, 2005.

[19] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson,
J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B.
Ketchen, and M. Steffen, “Simple all-microwave entangling gate for
fixed-frequency superconducting qubits,” Physical review letters, vol.
107, no. 8, p. 080502, 2011.

[20] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P.
Orlando, S. Gustavsson, and W. D. Oliver, “Tunable coupling scheme for
implementing high-fidelity two-qubit gates,” Physical Review Applied,
vol. 10, no. 5, p. 054062, 2018.

[21] W. G. Unruh, “Maintaining coherence in quantum computers,” Physical

Review A, vol. 51, no. 2, p. 992, 1995.

[22] E. McKinney, C. Zhou, M. Xia, M. Hatridge, and A. K. Jones, “Parallel
driving for fast quantum computing under speed limits,” in Proceedings

of the 50th Annual International Symposium on Computer Architecture,
2023, pp. 1–13.

[23] M. A. Bowman, P. Gokhale, J. Larson, J. Liu, and M. Suchara,
“Hardware-conscious optimization of the quantum toffoli gate,” arXiv

preprint arXiv:2209.02669, 2022.

[24] N. Earnest, C. Tornow, and D. J. Egger, “Pulse-efficient circuit tran-
spilation for quantum applications on cross-resonance-based hardware,”
Physical Review Research, vol. 3, no. 4, p. 043088, 2021.

[25] J. Liu, L. Bello, and H. Zhou, “Relaxed peephole optimization: A
novel compiler optimization for quantum circuits,” in 2021 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 301–314.

[26] F. Vatan and C. Williams, “Optimal quantum circuits for general two-
qubit gates,” Physical Review A, vol. 69, no. 3, p. 032315, 2004.

[27] D. R. Pérez, P. Varosy, Z. Li, T. Roy, E. Kapit, and D. Schuster,
“Error-divisible two-qubit gates,” Phys. Rev. Appl., vol. 19, p.
024043, Feb 2023. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevApplied.19.024043

[28] P. Rakyta and Z. Zimborás, “Approaching the theoretical limit in
quantum gate decomposition,” Quantum, vol. 6, p. 710, 2022.

[29] M. Saeedi, M. Arabzadeh, M. S. Zamani, and M. Sedighi, “Block-based
quantum-logic synthesis,” arXiv preprint arXiv:1011.2159, 2010.

[30] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum
logic circuits,” in Proceedings of the 2005 Asia and South Pacific Design

Automation Conference, 2005, pp. 272–275.

[31] P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition via
adaptive circuit compression,” arXiv preprint arXiv:2203.04426, 2022.

[32] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE,
“Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online].
Available: https://www.osti.gov//servlets/purl/1785933

[33] L. Lao, P. Murali, M. Martonosi, and D. Browne, “Designing calibration
and expressivity-efficient instruction sets for quantum computing,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2021, pp. 846–859.

[34] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Geometric theory of
nonlocal two-qubit operations,” Physical Review A, vol. 67, no. 4, p.
042313, 2003.

[35] E. C. Peterson, “monodromy: Computations in the monodromy
polytope for quantum gate sets,” 2021, https://github.com/Qiskit/
monodromy.

[36] P. M. Cruz and B. Murta, “Shallow unitary decompositions of quan-
tum fredkin and toffoli gates for connectivity-aware equivalent circuit
averaging,” arXiv preprint arXiv:2305.18128, 2023.

[37] A. Antipov, E. Kiktenko, and A. Fedorov, “Realizing a class of stabilizer
quantum error correction codes using a single ancilla and circular
connectivity,” Physical Review A, vol. 107, no. 3, p. 032403, 2023.

[38] I. Simakov, I. Besedin et al., “Scalable quantum error correction code
on a ring topology of qubits,” arXiv preprint arXiv:2211.03094, 2022.

[39] T. Tanamoto, K. Maruyama, Y.-x. Liu, X. Hu, and F. Nori, “Efficient
purification protocols using iswap gates in solid-state qubits,” Physical

Review A, vol. 78, no. 6, p. 062313, 2008.

[40] Y. Ji, K. F. Koenig, and I. Polian, “Optimizing qaoa on bipotent
architectures,” arXiv preprint arXiv:2303.13109, 2023.

[41] B. Tan and J. Cong, “Optimal qubit mapping with simultaneous gate
absorption,” in 2021 IEEE/ACM International Conference On Computer

Aided Design (ICCAD). IEEE, 2021, pp. 1–8.

[42] A. Hashim, R. Rines, V. Omole, R. K. Naik, J. M. Kreikebaum,
D. I. Santiago, F. T. Chong, I. Siddiqi, and P. Gokhale, “Optimized
fermionic swap networks with equivalent circuit averaging for qaoa,”
arXiv preprint arXiv:2111.04572, 2021.

[43] H.-F. Wang, X.-X. Jiang, S. Zhang, and K.-H. Yeon, “Efficient quantum
circuit for implementing discrete quantum fourier transform in solid-
state qubits,” Journal of Physics B: Atomic, Molecular and Optical

Physics, vol. 44, no. 11, p. 115502, 2011.

[44] E. Bahnsen, S. Rasmussen, N. Loft, and N. Zinner, “Application of the
diamond gate in quantum fourier transformations and quantum machine
learning,” Physical Review Applied, vol. 17, no. 2, p. 024053, 2022.

[45] E. C. Peterson, L. S. Bishop, and A. Javadi-Abhari, “Optimal synthesis
into fixed xx interactions,” Quantum, vol. 6, p. 696, 2022.

[46] E. McKinney, M. Xia, C. Zhou, P. Lu, M. Hatridge, and A. K. Jones,
“Co-designed architectures for modular superconducting quantum com-
puters,” in 2023 IEEE International Symposium on High-Performance

Computer Architecture (HPCA). IEEE, 2023, pp. 759–772.
[47] K. Zyczkowski and M. Kus, “Random unitary matrices,” Journal of

Physics A: Mathematical and General, vol. 27, no. 12, p. 4235, 1994.
[48] Qiskit contributors, “Qiskit: An open-source framework for quantum

computing,” 2023.
[49] P. Gokhale, T. Tomesh, M. Suchara, and F. T. Chong, “Faster

and more reliable quantum swaps via native gates,” arXiv preprint

arXiv:2109.13199, 2021.
[50] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer,

A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-
insensitive qubit design derived from the cooper pair box,” Physical

Review A, vol. 76, no. 4, p. 042319, 2007.
[51] A. Javadi, “Improving quantum circuits with heterogenous gatesets,” in

American Physical Society (March Meeting), 2023.
[52] G. E. Crooks, “Gates, states, and circuits,” Gates states and circuits,

2020.
[53] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem

for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 1001–1014.
[54] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-

level qasm benchmark suite for nisq evaluation and simulation,” arXiv

preprint arXiv:2005.13018, 2020.
[55] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmark-

ing Software and Design Automation Tools for Quantum Computing,”
Quantum, 2023, MQT Bench is available at https://www.cda.cit.tum.de/
mqtbench/.

[56] M. Xia, C. Zhou, C. Liu, P. Patel, X. Cao, P. Lu, B. Mesits, M. Mucci,
D. Gorski, D. Pekker et al., “Fast superconducting qubit control with
sub-harmonic drives,” arXiv preprint arXiv:2306.10162, 2023.

[57] J. Liu, P. Li, and H. Zhou, “Not all swaps have the same cost: A case
for optimization-aware qubit routing,” in 2022 IEEE International Sym-

posium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 709–725.

[58] J. Liu, E. Younis, M. Weiden, P. Hovland, J. Kubiatowicz, and C. Iancu,
“Tackling the qubit mapping problem with permutation-aware synthe-
sis,” arXiv preprint arXiv:2305.02939, 2023.

A. Artifact Appendix

A.1 Abstract

This artifact accompanies our research on optimizing quantum
transpilation by integrating layout and routing stages with gate de-
composition. The key strategy involves the use of mirror gates, en-
abling more cost-efficient routing without increasing decomposi-
tion costs. The artifact includes the source code for the Mirage al-
gorithm, Jupyter notebooks detailing our experiments, and datasets
used to validate our methodology.

A.2 Artifact check-list (meta-information)

• Program: Python, Jupyter Notebooks

• Run-time environment: Python 3.9, Jupyter kernel

• OS: Ubuntu 22.04.2 LTS on Windows 10 x86 64

• Execution: Quantum circuit transpilation

• Output: Circuit depth and swap count analysis

• Disk space required (approx.): 1 GB

• Time to prepare workflow (approx.): 15 minutes

• Time to complete experiments (approx.): 3-4 hours

• Publicly available?: Yes

• Workflow framework used?: Jupyter notebook

• Archived?: 10.5281/zenodo.10208067

A.3 Description

A.3.1 How to access

The artifact, including the Mirage algorithm and experimental
notebooks, is available on GitHub: https://github.com/Pitt-
JonesLab/mirror-gates. Additionally, the artifact can be found
permanently hosted on Zenodo: 10.5281/zenodo.10208067.

A.3.2 Hardware dependencies

The experiments can be conducted on a standard computer setup;
however, the artifact has only been tested on Ubuntu.

A.4 Software dependencies

Software dependencies are specified in the ‘pyproject.toml‘ file.
Key dependencies include Python 3.9+ and libraries such as
‘scipy‘, ‘qutip‘, ‘numpy‘, ‘qiskit‘, and others. Necessary for the
artifact’s functionality are the core dependencies:

• ‘monodromy‘ (from https://github.com/evmckinney9/
monodromy.git)

• ‘transpile benchy‘ (from https://github.com/evmckinney9/
transpile_benchy.git)

Note: Monodromy requires ‘lrslib‘, not installed by ‘make init‘.
Install ‘lrslib‘ separately via ‘sudo apt install lrslib‘. More details
at https://cgm.cs.mcgill.ca/~avis/C/lrs.html.

The ‘init‘ target in the Makefile handles the environment setup
and main dependencies installation. For development, the ‘dev-init‘
target includes additional tools and sets up ‘transpile benchy‘ and
‘monodromy‘ in editable mode.

The Mirage algorithm is detailed in ‘src/mirror gates/mirage.py‘,
with custom Qiskit transpiler layout and routing entry points de-
fined in ‘pyproject.toml‘.

A.4.1 Data sets

The experiments utilize custom quantum circuit benchmarks, de-
fined in ‘.txt‘ files located in ‘src/mirror gates/circuits/‘, focus-
ing on comparing circuit depth and swap counts across different
topologies. Benchmarks are sourced from QASMBench and MQT-
Bench, interfaced via ‘transpile benchy‘.

A.5 Installation

To reproduce the experiments:

1. Clone the repository:

git clone https :// github.com/Pitt -
JonesLab/mirror -gates

2. Navigate to the cloned directory and run:

make init

This sets up the environment and installs all required depen-
dencies, (not including ‘lrslib‘ which is a prerequisite for the
Monodromy dependency).

A.6 Experiment Workflow

This section outlines the structured process for conducting exper-
iments using the provided Jupyter notebooks. Be sure to select
the jupyter notebook kernel source to be the virtual environment
(.venv/) created by the make init command.

A.6.1 Monodromy Mirror Gates Analysis

• Filename: weyl mirrors/01 weyl mirrors.ipynb - Con-
ducts Monte Carlo fitting of coverage volumes using a trial-
and-error decomposition ansatz (Figures 3-5).

A.6.2 Key Benchmark Notebooks

• Filename: 01 HH bench.ipynb - Evaluates
√

iSWAP on heavy-
hex topology (Fig. 12a).

• Filename: 02 SL bench.ipynb - Analyzes
√

iSWAP on square-
lattice topology (Fig. 12b).

• Filename: r03 HH CX bench.ipynb & r04 SL SYC.ipynb -
Investigates CNOT on heavy-hex and SYC on square-lattice,
respectively (Figs. 13a and 13b).

A.6.3 Supplementary Experiments

• Filename: 03 aggressions.ipynb - Studies different aggres-
sion settings in transpilation (Fig. 10).

• Filename: 02 post selection.ipynb - Focuses on post-
selection analysis for SWAP counts versus Depth (Fig. 11).

• Filename: 06 speedups.ipynb - Compares the performance
speed of Mirage against Python SABRE (Fig. 15).

A.6.4 Noisy Simulation Branch Analysis

• Filename: simulation/03 fid bench.ipynb - Runs cir-
cuits for data collection over fidelity benchmarks.

• Filename: simulation/04 scaling.ipynb - Addresses scal-
ing benchmarks in the noisy simulation branch (Fig. 14).

A.7 Methodology

Submission, reviewing, and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

