Pittsburgh Quantum Institute

Co-Designed Architectures for Modular Superconducting Quantum Computers Evan McKinney⁺, Mingkang Xia^s, Chao Zhou^s, Pinlei Lu^s, Michael Hatridge^s, Alex K. Jones[†]

(Square-Lattice, Heavy-Hex)

Physical Qubits

[†]Department of Electrical and Computer Engineering, [§]Department of Physics and Astronomy University of Pittsburgh

Pittsburgh Quantum Institute

www.pqi.org

Pittsburgh Quantum Institute

www.pqi.org

int
 Rich topologies are key to data
movement and efficient QC
 Even smaller 16Q
"neighborhoods" can benefit
Heavy-Hex is 82% slower (<< fidelity)
than Corral ₁₁
 Sparse topologies require more
SWAP gates when scaled
80Q Heavy-Hex 3X critical path SWAPs
vs. Hypercubes
 Need scalable, modular
architectures
• $\sqrt[n]{iSWAP}$ gates provide benefits
References
A modular quantum computer based on a quantum rint arXiv:2109.06848 (2021). . "Towards ultra-high fidelity quantum operations:
native two-qubit gate." arXiv preprint 1). Martonosi and D. Browne "Designing
vity-efficient instruction sets for quantum //IEEE 48th Annual International Symposium on

www.pqi.org