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Quantum computer co-design

Transpilation
Placement/Routing Basis Translation

Connectivity Topologies Native Hardware Gates

Physical Qubits

Quantum Algorithms 

➢ Physics constrains possible topologies and basis gates 

➢ Prioritize improving qubit and gate fidelities

McKinney, et al. arXiv:2302.01252 (2023)

McKinney, et al. arXiv:2302.01252 (2023)



Qubit routing with SWAPs

➢ Example: Square-Lattice Topology ➢ Inducing SWAP gates on a circuit
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➢ SWAPs are expensive, we desire connectivities 
which minimize the need for data movement

SWAP-minimization is NP-complete
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Motivating co-design

IBM Google Hatlab

The choice of gate type and coupling topology are not independent, as they are both 

determined by the choice of modulator.



Coupling topologies

➢ Common Planar Topologies [1,2]

[1] Nation, et al. IBM (2021)

[2] Arute, et al. Nature (2019)

[3] Zhou, et al. arXiv: 2109.06848 (2021)
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Coupling topologies

➢ Common Planar Topologies [1,2] ➢ Modular Tree [3]

➢ 4D-Hypercube

[1] Nation, et al. IBM (2021)

[2] Arute, et al. Nature (2019)

[3] Zhou, et al. arXiv: 2109.06848 (2021)

Useful in classical networking but is 

difficult to physically realize



Experimental hardware design

Zhou, et al. arXiv: 2109.06848 (2021)

Assembled device

Module

Four qubit SNAIL-based quantum module

Rendered module and image



Scaling SNAIL tree topologies

20 Qubit Trees

4-ary
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Scaling SNAIL tree topologies

20 Qubit Trees 84 Qubit Tree

Level 1 Module

Level 2 Module

Level 3 Module

Levels 1&2

interleaved

4-ary 5-ary



Co-designed SNAIL topologies

16 Qubit Corral11
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Objective: Maintain the low- diameter property of hypercubes without the poor dimensionality scaling. 
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Benchmarking small topologies

➢ Even smaller 16Q “neighborhoods” can benefit

➢ Heavy-Hex is 82% slower (<< fidelity) than Corral11



Benchmarking large topologies

➢ Sparse topologies require more SWAP gates when scaled 

➢ 80Q Heavy-Hex induces 3X critical path SWAPs vs. Hypercubes



Two-qubit basis gates

➢ Decompose all algorithm gates into new basis 

using repeated applications 

➢ An optimal basis gate reduces overall duration

➢ Powerful gates need less applications

➢ Fidelity limited by decoherence in time
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Two-qubit basis gates

➢ Goal: Use both decomposition efficiency and hardware latency = overall duration

➢ NISQ algorithms dominated by CX and SWAP gates

➢ Decompose all algorithm gates into new basis 

using repeated applications 

➢ An optimal basis gate reduces overall duration

➢ Powerful gates need less applications

➢ Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates
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Conversion/Gain candidate basis gates

Four qubit SNAIL-based quantum module

➢ Engineerable interactions yields a basis gate design-space

Zhou, et al. arXiv:2109.06848 (2021)
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Conversion/Gain candidate basis gates

Four qubit SNAIL-based quantum module

➢ Engineerable interactions yields a basis gate design-space

iSWAP

B

CX

Zhou, et al. arXiv:2109.06848 (2021)

Unit Cost



Basis coverage volumes

➢ Monodromy polytopes finds minimum gate 

applications for any 2Q target gate

➢ A single gate locally equivalent to itself

➢ SWAP is the most expensive target

Peterson, et al. Quantum 4 (2020): 247
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Repeats K times | i ➜ 1 to K 

Approximate decomposition into continuous iSWAP
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➢ Coherence-limited fidelity as a function of gate duration
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➢ Coherence-limited fidelity as a function of gate duration

2
iSwap decreases infidelity by 51%, 

4
iSwap by 58% vs iSwap 

Repeats K times | i ➜ 1 to K 

Approximate decomposition into continuous iSWAP



Benchmarking duration

Connectivity Topologies Native Hardware Gates

• Considering the impact from both topology and basis gate

80Q Heavy-Hex 54% slower (<< fidelity) vs. Hypercubes



Conclusion

1. SNAIL coupling provides both powerful topologies and basis gates

2. Corral increases parallelism for near-term quantum applications

3. Continuous iSwap gate set shortens overall duration. 

McKinney, et al. HPCA (2023).

evm9.dev
Mingkang Xia

Chao Zhou
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