Using Co-Designed Architectures for Modular Superconducting Quantum Computers

<u>Evan McKinney</u>[†], M. Xia[§], C. Zhou[§], P. Liu[§], M. Hatridge[§], A.K. Jones[†]

[†]Department of Electrical and Computer Engineering, University of Pittsburgh [§]Department of Physics and Astronomy, University of Pittsburgh

HPCA, 2023

Quantum computer co-design

- Physics constrains possible topologies and basis gates
- Prioritize improving qubit and gate fidelities

McKinney, et al. *arXiv*:2302.01252 (2023) McKinney, et al. *arXiv*:2302.01252 (2023)

Qubit routing with SWAPs

Inducing SWAP gates on a circuit
 SWAP-minimization is NP-complete

SWAPs are expensive, we desire connectivities which minimize the need for data movement

Qubit routing with SWAPs

Example: Square-Lattice Topology

Inducing SWAP gates on a circuit SWAP-minimization is NP-complete

SWAPs are expensive, we desire connectivities which minimize the need for data movement

Motivating co-design

The choice of gate type and coupling topology are not independent, as they are both determined by the choice of *modulator*.

Coupling topologies

[1] Nation, et al. IBM (2021)
[2] Arute, et al. Nature (2019)
[3] Zhou, et al. arXiv: 2109.06848 (2021)

Coupling topologies

 \succ

[1] Nation, et al. IBM (2021)
[2] Arute, et al. Nature (2019)
[3] Zhou, et al. arXiv: 2109.06848 (2021)

➢ 4D-Hypercube

Coupling topologies

Experimental hardware design

Four qubit SNAIL-based quantum module

Rendered module and image

Assembled device

Scaling SNAIL tree topologies

20 Qubit Trees

Scaling SNAIL tree topologies

20 Qubit Trees

Scaling SNAIL tree topologies

20 Qubit Trees

84 Qubit Tree

5-ary

Co-designed SNAIL topologies

Objective: Maintain the low- diameter property of hypercubes without the poor dimensionality scaling.

16 Qubit Corral₁₁

Co-designed SNAIL topologies

Objective: Maintain the low- diameter property of hypercubes without the poor dimensionality scaling.

16 Qubit Corral₁₁

16 Qubit Corral₁₂

Even smaller 16Q "neighborhoods" can benefit

 \blacktriangleright Heavy-Hex is 82% slower (<< fidelity) than Corral₁₁

Sparse topologies require more SWAP gates when scaled

> 80Q Heavy-Hex induces 3X critical path SWAPs vs. Hypercubes

Decompose all algorithm gates into new basis using repeated applications

> An optimal basis gate *reduces overall duration*

- Powerful gates need less applications
- Fidelity limited by decoherence in time

Decompose all algorithm gates into new basis using repeated applications

- > An optimal basis gate *reduces overall duration*
 - Powerful gates need less applications
 - Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates

Decompose all algorithm gates into new basis

using repeated applications

- > An optimal basis gate *reduces overall duration*
 - Powerful gates need less applications
 - Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates

> NISQ algorithms dominated by CX and SWAP gates

Decompose all algorithm gates into new basis

using repeated applications

- > An optimal basis gate *reduces overall duration*
 - Powerful gates need less applications
 - Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates

- NISQ algorithms dominated by CX and SWAP gates
- Goal: Use both decomposition efficiency and hardware latency = overall duration

Four qubit SNAIL-based quantum module

> Engineerable interactions yields a basis gate design-space

 $\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$

> Engineerable interactions yields a basis gate design-space

$$\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$$

> Engineerable interactions yields a basis gate design-space

$$\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$$

> Engineerable interactions yields a basis gate design-space

$$\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$$

> Engineerable interactions yields a basis gate design-space

$$\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$$

Basis coverage volumes

- Monodromy polytopes finds minimum gate applications for any 2Q target gate
- A single gate locally equivalent to itself
- > SWAP is the most expensive target

iSWAP

2.0

3.0

3.0

Haar

Basis coverage volumes

- Monodromy polytopes finds minimum gate applications for any 2Q target gate
- > A single gate locally equivalent to itself
- > SWAP is the most expensive target

Decomposition gate count costs

Basis	iSWAP	\sqrt{iSWAP}	CNOT	√CNOT	В	\sqrt{B}
CNOT	2.0	2.0	1.0	2.0	2.0	2.0
SWAP	3.0	3.0	3.0	6.0	2.0	4.0
Haar	3.0	2.2	3.0	3.5	2.0	3.1

Peterson, et al. *Quantum* 4 (2020): 247

Monodromy polytopes finds minimum gate \geq applications for any 2Q target gate

- A single gate locally equivalent to itself \succ
- SWAP is the most expensive target

Decomposition gate count costs

Basis	iSWAP	√iSWAP	CNOT	√CNOT	В	√B
CNOT	2.0	2.0	1.0	2.0	2.0	2.0
SWAP	3.0	3.0	3.0	6.0	2.0	4.0
Haar	3.0	2.2	3.0	3.5	2.0	3.1

Peterson, et al. *Quantum* 4 (2020): 247

Coherence-limited fidelity as a function of gate duration

 $\sqrt[2]{iSwap}$ decreases infidelity by 51%, $\sqrt[4]{iSwap}$ by 58% vs iSwap

• Considering the impact from both topology and basis gate 80Q Heavy-Hex 54% slower (<< fidelity) vs. Hypercubes

÷

Connectivity Topologies

Native Hardware Gates

Conclusion

- 1. SNAIL coupling provides both powerful topologies and basis gates
- 2. Corral increases parallelism for near-term quantum applications
- 3. Continuous iSwap gate set shortens overall duration.

McKinney, et al. HPCA (2023).

Mingkang Xia

Chao Zhou