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Quantum computer co-design

Transpilation
Placement/Routing Basis Translation

Connectivity Topologies Native Hardware Gates

Physical Qubits

Quantum Algorithms 

➢ Physics constrains possible topologies and basis gates 

➢ Prioritize improving qubit and gate fidelities



What we’ve done

➢ Transpile circuits to Hatlab connectivity

➢ Co-design study topology networks

McKinney, et al. HPCA (2023)
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Two-qubit basis gates

➢ Decompose all algorithm gates into new basis 

using repeated applications 

➢ An optimal basis gate reduces overall duration

➢ Powerful gates need less applications

➢ Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates
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Y. Makhlin, Quantum Info. Process. 1, (2002)
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Two-qubit basis gates

➢ Goal: Use both decomposition efficiency and hardware latency = overall duration

➢ NISQ algorithms dominated by CX and SWAP gates

➢ Decompose all algorithm gates into new basis 

using repeated applications 

➢ An optimal basis gate reduces overall duration

➢ Powerful gates need less applications

➢ Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates
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Conversion/Gain candidate basis gates

Four qubit SNAIL-based quantum module

➢ Engineerable interactions yields a basis gate design-space

Zhou, et al. npj Quantum Inf 9, 54 (2023).

Xia, et al. APS March Meeting (2023)



Conversion/Gain candidate basis gates

Four qubit SNAIL-based quantum module

➢ Engineerable interactions yields a basis gate design-space

Zhou, et al. npj Quantum Inf 9, 54 (2023).

Xia, et al. APS March Meeting (2023)
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Basis coverage volumes

➢ Monodromy polytopes finds minimum gate 

applications for any 2Q target gate

➢ A single gate is locally equivalent to itself

➢ SWAP is the most expensive target

Peterson, et al. Quantum 4 (2020): 247
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CNOT 2.0

SWAP 3.0
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1 iSWAP
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3 iSWAPs



Basis coverage volumes

➢ Monodromy polytopes finds minimum gate 

applications for any 2Q target gate

➢ A single gate is locally equivalent to itself

➢ SWAP is the most expensive target
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CNOT 2.0 2.0 1.0 2.0 2.0 2.0

SWAP 3.0 3.0 3.0 6.0 2.0 4.0

Haar 3.0 2.2 3.0 3.5 2.0 3.1

Peterson, et al. Quantum 4 (2020): 247

Decomposition gate count costs



Basis coverage volumes

➢ Monodromy polytopes finds minimum gate 

applications for any 2Q target gate

➢ A single gate is locally equivalent to itself

➢ SWAP is the most expensive target

Target\Basis   W P   W P CX  X B B

CNOT 2.0 2.0 1.0 2.0 2.0 2.0

SWAP 3.0 3.0 3.0 6.0 2.0 4.0

Haar 3.0 2.2 3.0 3.5 2.0 3.1

Peterson, et al. Quantum 4 (2020): 247

Decomposition gate count costs



Hardware speed limits

Module

Limitation of SNAIL when driving 

both gain and conversion 

Drives applied between 
SNAIL and qubit

Measure second qubit to 
witness SNAIL breakpoint

Zhou, et al. npj Quantum Inf 9, 54 (2023).
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Hardware speed limits

Module

CX

Limitation of SNAIL when driving 

both gain and conversion 

B

iSWAP

Drives applied between 
SNAIL and qubit

Measure second qubit to 
witness SNAIL breakpoint

Target\Basis   W P   W P  X  X B B

Duration 1.0 0.5 1.8 0.9 1.4 0.7

CNOT 2.0 1.0 1.8 1.8 2.8 1.4

SWAP 3.0 1.5 5.4 5.4 2.8 2.8

Haar 3.0 1.1 5.4 3.2 2.8 2.2

Decomposition normalized duration costs 

Zhou, et al. npj Quantum Inf 9, 54 (2023).
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Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in discrete 
time steps equivalent to basis gate duration

➢ Parallel-D  ve “ tee  ” to p ev o     
inaccessible regions

Unit Cost



Extended basis coverage volumes

Watts, et al. Physical Review A 91.6 (2015): 062306
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Extended basis coverage volumes
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Makhlin invariants functional 
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➢ Single gates have non-zero volume!



Extended basis coverage volumes

Watts, et al. Physical Review A 91.6 (2015): 062306

➢ Nelder-Mead optimization over 
Makhlin invariants functional 

Target\Basis   W P PD+   W P

CNOT 1.75 1.5

SWAP 2.5 2.25

Haar 1.9 1.7

➢ Single gates have non-zero volume!
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Cartan trajectories for   W P

1Q Gates
Traditional
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Conclusion

1. Decrease circuit duration by 17.84% over NISQ benchmarks!

2. Improve fidelity using   W P basis by 10.5% for random gates

3. Next steps, hardware realization

McKinney, et al. ISCA (2023)
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