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Physical Qubits

» Physics constrains possible topologies and basis gates

> Prioritize improving qubit and gate fidelities
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» Transpile circuits to Hatlab connectivity 28-qubits
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» Decompose all algorithm gates into new basis
using repeated applications
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» An optimal basis gate reduces overall duration

» Powerful gates need less applications
> Fidelity limited by decoherence in time

Two-qubit basis gates vy
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» Weyl Chamber visualizes the set of all 2Q gates
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Y. Makhlin, Quantum Info. Process. 1, (2002)



» Decompose all algorithm gates into new basis
using repeated applications

-
H
12

20 20

» An optimal basis gate reduces overall duration

» Powerful gates need less applications
> Fidelity limited by decoherence in time

Two-qubit basis gates vy
© o

/2

n 0

» NISQ algorithms dominated by CX and SWAP gates

Y. Makhlin, Quantum Info. Process. 1, (2002)



» Decompose all algorithm gates into new basis
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» An optimal basis gate reduces overall duration

» Powerful gates need less applications
> Fidelity limited by decoherence in time

Two-qubit basis gates vy
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» NISQ algorithms dominated by CX and SWAP gates

» Goal: Use both decomposition efficiency and hardware latency = overall duration

Y. Makhlin, Quantum Info. Process. 1, (2002)



Conversion/Gain candidate basis gates

» Engineerable interactions yields a basis gate design-space
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Xia, et al. APS March Meeting (2023)
Zhou, et al. npj Quantum Inf 9, 54 (2023).
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3 iSWAPs » Monodromy polytopes finds minimum gate
2 4 applications for any 2Q target gate
» Asingle gate is locally equivalent to itself
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» Monodromy polytopes finds minimum gate
applications for any 2Q target gate

» Asingle gate is locally equivalent to itself

» SWAP is the most expensive target

Decomposition gate count costs
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Hardware speed limits vy
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Extended candidate basis gates
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» Drive qubits independently from the SNAIL in discrete 0.4
time steps equivalent to basis gate duration 0o
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» Parallel-Drive “steers” to previously
Inaccessible regions




Extended basis coverage volumes
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Watts, et al. Physical Review A 91.6 (2015): 062306
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» Nelder-Mead optimization over
Makhlin invariants functional

Training Loss
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Watts, et al. Physical Review A 91.6 (2015): 062306
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» Nelder-Mead optimization over
Makhlin invariants functional

Training Loss
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» Single gates have non-zero volume!

Watts, et al. Physical Review A 91.6 (2015): 062306
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Conclusion )
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1. Decrease circuit duration by 17.84% over NISQ benchmarks!

2. Improve fidelity using ViSWAP basis by 10.5% for random gates
3. Next steps, hardware realization

McKinney, et al. ISCA (2023)
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