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Topology co-design
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➢ Transpile circuits to Hatlab connectivity

➢ Co-design study topology networks



Two-qubit basis gates

➢ Decompose all algorithm gates into new basis 

using repeated applications 

➢ An optimal basis gate reduces overall duration

➢ Powerful gates need less applications

➢ Fidelity limited by decoherence in time

➢ Weyl Chamber visualizes the set of all 2Q gates
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Y. Makhlin, Quantum Info. Process. 1, (2002)
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Two-qubit basis gates

➢ Goal: Use both decomposition efficiency and hardware latency = overall duration
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Conversion/Gain candidate basis gates

Four qubit SNAIL-based quantum module

➢ Engineerable interactions yields a basis gate 

design-space

Zhou, et al. npj Quantum Inf 9, 54 (2023)
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Basis coverage volumes

➢ Monodromy polytopes finds minimum gate 

applications for any 2Q target gate

➢ A single gate is locally equivalent to itself

➢ SWAP is the most expensive target

Peterson, et al. Quantum 4 (2020)

Target\Basis   W P  

CNOT 2.0

SWAP 3.0

Haar 3.0

1 iSWAP

2 iSWAPs

3 iSWAPs
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Drives applied between 
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Partial pulsed gates are a good value

Why not make the pulses increasing 

small?



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

McKinney, et al. ISCA (2023)



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

McKinney, et al. ISCA (2023)



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

McKinney, et al. ISCA (2023)

➢ Parallel-D     “      ”    p          
inaccessible regions

Unit Cost



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

➢ Parallel-D     “      ”    p  f  m 
decomposition

McKinney, et al. ISCA (2023)

1Q Gates



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

➢ Parallel-D     “      ”    p  f  m 
decomposition

McKinney, et al. ISCA (2023)

1Q Gates



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

➢ Parallel-D     “      ”    p  f  m 
decomposition

McKinney, et al. ISCA (2023)

1Q Gates



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

➢ Parallel-D     “      ”    p  f  m 
decomposition

McKinney, et al. ISCA (2023)

1Q Gates



Extended candidate basis gates

➢ Drive qubits independently from the SNAIL in 

discrete time steps equivalent to basis gate 

duration

➢ Parallel-D     “      ”    p  f  m 
decomposition

1. Decrease circuit duration by 17.84% over NISQ 

benchmarks!

2. Improve fidelity using   W P basis by 10.5% for 

random gates

McKinney, et al. ISCA (2023)

1Q Gates
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What do SWAPs do?

Placement/Routing Basis Translation

Connectivity 

Topologies

Native Hardware 

Gates

Physical Qubits and Modulator

Quantum Algorithms 

➢ Key Idea: Routing and Basis Translation are not independent, 

    all SWAP gates must also be decomposed.

“M     ” G   



Mirror-inclusive coverage sets

4
  W P

3
  W P

  W P

CNOT

➢ Compute using monodromy:

➢ Union of coverage volume and the mirror coverage volume

➢ OR include a 0-cost SWAP gate in the basis set
For all, 𝑘 = 2
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➢ Intuition: Approximate decomp threshold defines an 

acceptable inflated polytope volume.
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Monte Carlo Haar scores

➢ Intuition: Approximate decomp threshold defines an 

acceptable inflated polytope volume.

Javadi, Ali. APS March Meeting (2023)

➢   W P with approximate decomp + mirrors has an 

8.8% relative decrease in total infidelity

  W P

4
  W P

McKinney, et al. arXiv:2308.03874 (2023)

Exact: Fail Approx. + Mirrors: Success



Decomposition identities

Schuch, et al. Physical Review A 67.3 (2003) McKinney, et al. arXiv:2308.03874 (2023)
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➢ CPHASE gates mirror to pSWAP gates

Peterson, et al. Quantum 6 (2022)
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Using this identity for data movement

Goal: Full entanglement 

on a line topology

➢ Intuition: For every CX, decide whether output qubit ordering is (q0, q1) or (q1, q0)

  based on whether it makes the qubits closer to their next qubit pair

Qiskit
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Qiskit flow

Li, et al. ASPLOS (2019)

https://qiskit.org/documentation/apidoc/transpiler.html
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Mirage flow

Li, et al. ASPLOS (2019)

➢ Simple yet powerful modification to SABRE:

➢ Each gate must pass through an Intermediate Layer

➢ Considers if substituting the mirror would reduce topological distance cost



Gate count results

➢ For the Heavy-Hex topology

➢ Average depth decrease of 31.19%

➢ Average total gate decrease of 16.97%



Gate count results

➢ For the Heavy-Hex topology

➢ Average depth decrease of 31.19%

➢ Average total gate decrease of 16.97%

➢ Software optimizations:

➢ Depth post-selection criteria

➢ Variable mirror acceptance thresholds

➢ Fast block consolidate w/ coord caching

➢ Use as a Qiskit Transpiler Plugin

https://github.com/Pitt-JonesLab/mirror-gates

https://github.com/Pitt-JonesLab/mirror-gates


Conclusion

➢ Parallel-drive basis decreases circuit duration by 17.84% 

➢ Mirror gates with approximate decomposition reduce infidelity by 9%

➢ Heavy-Hex circuit benchmarks, decrease depth by 31.19% compared to Qiskit

McKinney, et al. arXiv:2308.03874 (2023)

evm9.dev
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