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» Transpile circuits to Hatlab connectivity
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Two-qubit basis gates k=)
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> Decompose all algorithm gates into new basis » Weyl Chamber visualizes the set of all 2Q gates
using repeated applications
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» An optimal basis gate reduces overall duration

» Powerful gates need less applications
> Fidelity limited by decoherence in time

Y. Makhlin, Quantum Info. Process. 1, (2002) McKinney, et al. ISCA (2023)
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» Decompose all algorithm gates into new basis
using repeated applications
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» An optimal basis gate reduces overall duration

» Powerful gates need less applications
> Fidelity limited by decoherence in time

Two-qubit basis gates vy
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» NISQ algorithms dominated by CX and SWAP gates

» Goal: Use both decomposition efficiency and hardware latency = overall duration

Y. Makhlin, Quantum Info. Process. 1, (2002)

McKinney, et al. ISCA (2023)



Conversion/Gain candidate basis gates

» Engineerable interactions yields a basis gate
design-space

A

H = g.(e"%a"b+ e "Pab’) + g,(e"®7ab+ e oaTb")

Xia, et al. arXiv:2306.10162 (2023)
Zhou, et al. npj Quantum Inf 9, 54 (2023)
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Conversion/Gain candidate basis gates
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3 iISWAPs » Monodromy polytopes finds minimum gate
applications for any 2Q target gate

ni2 +
» Asingle gate is locally equivalent to itself

» SWAP is the most expensive target
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CNOT 2.0
SWAP 3.0
Haar 3.0

Peterson, et al. Quantum 4 (2020)
McKinney, et al. ISCA (2023)
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» Monodromy polytopes finds minimum gate
applications for any 2Q target gate

» Asingle gate is locally equivalent to itself

» SWAP is the most expensive target

Decomposition gate count costs
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SWAP 3.0 30 30 60 20 40
‘Haar [0 2.2 30 35 20 31

Peterson, et al. Quantum 4 (2020)
McKinney, et al. ISCA (2023)
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Limitation of SNAIL when driving
both gain and conversion

Zhou, et al. npj Quantum Inf 9, 54 (2023).
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Hardware speed limits
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o Decomposition normalized duration costs
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Hardware speed limits e
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o Decomposition normalized duration costs
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Extended candidate basis gates
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» Drive qubits independently from the SNAIL in
discrete time steps equivalent to basis gate
duration

A

H = g.(e"a’b+ e abl) + g,(e'%7ab + e~ “PsaTbl)

McKinney, et al. ISCA (2023)
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» Drive qubits independently from the SNAIL in
discrete time steps equivalent to basis gate
duration

A

H = g.(e"a’b+ e abl) + g,(e'%7ab + e~ “PsaTbl)
+e1(t)(a + a') + ex(t) (b + b)

McKinney, et al. ISCA (2023)
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» Drive qubits independently from the SNAIL in
discrete time steps equivalent to basis gate
duration

A
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McKinney, et al. ISCA (2023)
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» Parallel-Drive “steers” to previously

Extended candidate basis gates

Inaccessible regions
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» Parallel-Drive “steers” to perform
decomposition
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Extended candidate basis gates

SWAP
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benchmarks!

> Drive qubits independently, 2. Improve fidelity using vViSWAP basis by 10.5% for \

discrete time steps equival\ _ random gates

/1. Decrease circuit duration by 17.84% over NISQ

duration

A

H = gc(ei¢CaTb + e_w‘:abT) + gg(ei"bg ab + e~ s aTbT)
+er(t)(a+a’) + ex(t)(b+ b7

McKinney, et al. ISCA (2023)
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What do SWAPs do?

Quantum Algorithms

Placement/Routing Basis Translation
Connectivity Native Hardware
Topologies L Gates
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“Mirror” Gate

» Key Idea: Routing and Basis Translation are not independent,
all SWAP gates must also be decomposed.
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» Union of coverage volume and the mirror coverage volume

» OR include a 0-cost SWAP gate in the basis set

» Compute using monodromy:




> Intuition: Approximate decomp threshold defines an
acceptable inflated polytope volume.

Javadi, Ali. APS March Meeting (2023)
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McKinney, et al. arXiv:2308.03874 (2023)

Monte Carlo Haar scores
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> Intuition: Approximate decomp threshold defines an
acceptable inflated polytope volume.

Javadi, Ali. APS March Meeting (2023)
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Exact: Falil

McKinney, et al. arXiv:2308.03874 (2023)
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Approx. + Mirrors: Success
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Monte Carlo Haar scores Q;@o
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> Intuition: Approximate decomp threshold defines an Exact Exact + Mirrors
acceptable inflated polytope volume. — Approximate  —— Approximate + Mirrors
Javadi, Ali. APS March Meeting (2023) L5
¢ 110 f
n/2 w U‘j I
£ 105
Y 100 | .
] lllOO — -----1-01 — l”llllOQ — -----1-03
0 - n/2 4 Iteration
ISWAP
—— Exact Exact 4+ Mirrors
— Approdmate  —— Approximate + Mirrors

Exact: Fail Approx. + Mirrors: Success

> ViSWAP with approximate decomp + mirrors has an
8.8% relative decrease In total infidelity

McKinney, et al. arXiv:2308.03874 (2023)

Haar Score

109 101 102 103
Iteration
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» Intuition: For every CX, decide whether output qubit ordering is (g0, g1) or (g1, qO)
based on whether it makes the qubits closer to their next qubit pair
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Goal: Full entanglement Qiskit
on a line topology
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Using this identity for data movement

do—e— ] f/yz ] —Ijrz/z Rﬂx f/XQ — 90 — —IZ}Z/Q

1——  — % g e E o @ i —
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Goal: Full entanglement Qiskit MIRAGE
on a line topology
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Qiskit flow Q)
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Input Circuit Rewriting Steps Output Circuit
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https://qgiskit.org/documentation/apidoc/transpiler.html

Li, et al. ASPLOS (2019)
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Node is resolved?

Input Circuit DAG

Mirage flow

Repeat to completion

Exegute Layer )

\ Node is resolved?

Intermediate )
Laver

Is empty?

best SWAP

Find and insert

Accept Mirror Gate?

RSSOl

I—Select U or mirror U'

C Mapped DAG )4—

Static-SWAP

» Simple yet powerful modification to SABRE:

» Each gate must pass through an Intermediate Layer

» Considers if substituting the mirror would reduce topological distance cost

Li, et al. ASPLOS (2019)



Gate count results

7 > Average depth decrease of 31.19%
M > Average total gate decrease of 16.97%
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» For the Heavy-Hex topology
}f ’“}”’“ﬁ? > Average depth decrease of 31.19%
; » Average total gate decrease of 16.97%
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Gate count results Qe
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» Use as a Qiskit Transpiler Plugin

B 7 Usage

from qiskit.transpiler import CouplingMap
coupling map = CouplingMap.from_grid(6, 6)

1. Use as a Qiskit-Plugin

Integrate MIRAGE into your existing transpilation pipeline:

from qikist import transpile
mirage_qc = transpile(
qc # input .--'.-- .'_
optimization_ level
coupling | map—coupllng map
basis gates= ["u", "xx_plus yy", "id"],

routing_method="mirage",
layout method="sabre_ layout v2",

» Software optimizations:
» Depth post-selection criteria
» Variable mirror acceptance thresholds
» Fast block consolidate w/ coord caching

O https://github.com/Pitt-JoneslLab/mirror-gates



https://github.com/Pitt-JonesLab/mirror-gates

Conclusion )
© 0O

» Parallel-drive basis decreases circuit duration by 17.84%
» Mirror gates with approximate decomposition reduce infidelity by 9%

» Heavy-Hex circuit benchmarks, decrease depth by 31.19% compared to Qiskit

McKinney, et al. arXiv:2308.03874 (2023)
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