Error Budgeting for Superconducting Modular Quantum Architecture Designs

<u>Evan McKinney¹</u>, I. Yusuf², G. Falstin¹,G. Agarwal², M. Hatridge², A.K. Jones³

¹Department of Electrical and Computer Engineering, University of Pittsburgh ²Department of Applied Physics, Yale University ³Department of Electrical Engineering and Computer Science, Syracuse University

APS March Meeting (2025)

Transpilation as co-design framework

Connectivity reduces circuit costs

How much qubit connectivity is feasible with high fidelity?

McKinney, et al. HPCA (2023)

Four qubit SNAIL-based quantum module

Xia, et al. arXiv:2306.10162 (2023) Zhou, et al. npj Quantum Inf 9, 54 (2023) Frattini, et al. Applied Physics Letters (2017) Transmon (qubit)

<u>Module:</u> Yusuf, **MAR-A18.13** Repicky, **MAR-L18.13**

$$H = \omega_q q^{\dagger} q + \frac{\alpha}{12} (q^{\dagger} + q)^4$$

SNAIL (coupler)

<u>SNAIL:</u> Wang, **MAR-W09.11** Mesits, **MAR-N17.3** Nowicki, **MAR-T09.11**

+

Gate crowding in a module

de Freitas, et al. **ITOR** (2021) Park, et al. **J. Oper. Res. Soc. Jpn.** (1996)

Spectral crowding of terms

Zhou, Chao. PhD Thesis (2023)

Sources of infidelity from module crowding

Coherent error from spectators

Unwanted unitary terms decay with detuning

Remove explicit time-dependence with a worstcase approximation.

$$\left| \int_0^T e^{-it\delta} dt
ight| = 2 |\sin(T\delta/2)|/\delta|$$

Zhou, Chao. **PhD Thesis** (2023) McKinney, et al. **ISCA** (2023)

Incoherent loss from speed limits

Experimentally characterized max drive strength

Error budgeting against spectators

Driven Term				
Term	Coefficient	$\omega_p =$	Normalized Prefactor	
$(q_a^{\dagger}q_b + q_a q_b^{\dagger})$	$6 \eta \lambda^2g_3$	$ \omega_{q_b} - \omega_{q_a} $	1.0	
Intra-Module Spectator Terms				
$(s^{\dagger} + s)$	$3 \eta ^2g_3$	$\omega_s/2$	100.0	
$(s^{\dagger}q_a + sq_a^{\dagger})$	$6 \eta \lambda g_3$	$ \omega_s - \omega_{q_a} $	10.0	
$(q_a^{\dagger} + q_a)$	$3 \eta ^2\lambda g_3$	$\omega_{q_a}/2$	10.0	
$(s^{\dagger}q_a + sq_a^{\dagger})$	$\alpha \eta ^2 \lambda^3$	$ \omega_s - \omega_{q_a} /2$	0.067	
$(q_a^{\dagger} + q_a)$	$\alpha \eta ^3 \lambda^3/3$	$\omega_{q_a}/3$	0.044	
$(s^{\dagger} + s)$	$N_q \alpha \eta ^3 \lambda^4/3$	$\omega_s/3$	0.018	
Inter-Module Spectator Terms				
$(s_n^{\dagger} + s_n)$	$3 \eta ^2\lambda^2g_3$	$\omega_{s_n}/2$	1.0	
$(s^{\dagger}q_{c} + sq_{c}^{\dagger})$	$6 \eta \lambda^3g_3$	$ \omega_s - \omega_{q_c} $	0.1	
$(q_c^{\dagger} + q_c)$	$3 \eta ^2\lambda^3g_3$	$\omega_{q_c}/2$	0.1	
$\left[\left(q_a^{\dagger} q_c + q_a q_c^{\dagger} \right) \right]$	$6 \eta \lambda^4g_3$	$ \omega_{q_c} - \omega_{q_a} $	0.01	
$\left(s_n^{\dagger}q_a + s_n q_a^{\dagger}\right)$	$6 \eta \lambda^5g_3$	$ \omega_{s_n} - \omega_{q_a} $	0.001	
$\left[\left(q_c^{\dagger} q_d + q_c q_d^{\dagger} \right) \right]$	$6 \eta \lambda^6 g_3$	$ \omega_{q_d} - \omega_{q_c} $	0.0001	

For each interaction, use infidelity vs detuning characterization in **Nelder-Mead minimization** to allocate best mode frequencies

Module fidelities from optimized frequency stacks

N-qubit module	Avg gate fidelity
2	.996
3	.994
4	.990
5	.940

Tradeoffs between gate speed and spectators

Wei, et al. Phys Rev Applied (2024)

Conclusions

McKinney, et al. arXiv:2409.18262 (2024)

> Developed a fidelity model from characterized device properties

- Quantified tradeoffs between coherent and incoherent noise sources
- > Develop numerical optimization to minimize total average gate infidelity
- Frequency allocation problem to determine viable module sizes
 - SNAIL module supports up to 4 qubits before fidelity drops below 0.99
 - Partial frequency allocation improves base fidelity up to 0.994, yielding a 19.9% relative improvement in computational accuracy.

NATLAN

Alex K. Jones

Girgis Falstin

Procedurally generating topologies

Greedy inverse bipartite projection

- <u>1:</u> Satisfy all edges from input G'_A on G_A
- <u>2:</u> Add nodes to G_B until saturate all couplers

<u>3:</u> Verify isomorphism between input G'_A , output G_A

Selective edge removal

Sacrificing dense connectivity for less spectator crowding is a worthwhile tradeoff!