Co-designed architectures for modular superconducting quantum computers

<u>Evan McKinney</u>[†], M. Hatridge[§], A.K. Jones[†]

[†]Department of Electrical and Computer Engineering, University of Pittsburgh [§]Department of Applied Physics, Yale University

YQI, September 2024

HAIL

16>

NATLAN

SNAIL module

Four qubit SNAIL-based quantum module

Xia, et al. **arXiv:2306.10162** (2023) Zhou, et al. **npj Quantum Inf 9**, 54 (2023)

Parametric two qubit gates

Clerk, et al. **Reviews of Modern Physics** (2010) Bergeal, et al. **Nature Physics** (2010) Frattini, et al. **Applied Physics Letters** (2017)

Efficient instruction sets using \sqrt{iSWAP}

 π^{0}

McKinney, et al. **ISCA** (2023) Huang, et al. **Physical Review Letters** (2023) Chen, et al. **arxiv:2312.05652** (2023)

Geometrically representing quantum gates

Peterson, et al. **Quantum 4** (2020) Makhlin, Yuriy. **Quantum Information Processing** (2002) Watts, et al. **Entropy 15** (2013) Zhang, et al. **Physical Review A** (2003)

Cartan KAK decomposition

All 2Q gates can be specified by 3 invariants up to local rotations (1Q)

 $U = (K_1 \otimes K_2)e^{-i(k_x\sigma_{XX} + k_y\sigma_{YY} + k_z\sigma_{ZZ})}(K_3 \otimes K_4)$

Conversion/Gain candidate basis gates

Engineerable interactions from 3-wave mixing

$$\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$$

Native gates limited to XX,YY components

$$\hat{H} = \frac{1}{2} [(g_c + g_g)XX + (g_c - g_g)YY]$$

Cartan trajectories from Makhlin invariants

 $G_1 = (\cos (2g_c t) + \cos (2g_g t))^2 / 4$ $G_2 = \cos (2(g_c - g_g)t) + \cos (2(g_c + g_g)t) + 1$

Conversion/Gain candidate basis gates

Engineerable interactions from 3-wave mixing

$$\hat{H} = g_c(e^{i\phi_c}a^{\dagger}b + e^{-i\phi_c}ab^{\dagger}) + g_g(e^{i\phi_g}ab + e^{-i\phi_g}a^{\dagger}b^{\dagger})$$

Native gates limited to XX,YY components

$$\hat{H} = \frac{1}{2}[(g_c + g_g)XX + (g_c - g_g)YY]$$

Cartan trajectories from Makhlin invariants

 $G_1 = (\cos (2g_c t) + \cos (2g_g t))^2 / 4$ $G_2 = \cos (2(g_c - g_g)t) + \cos (2(g_c + g_g)t) + 1$

Monodromy polytopes

Satisfying all 72 quantum Littlewood-Richardson linear inequalities implies

Satisfy all $L_i(c_{i-1}, g_i, c_i)$ such that $\forall i, g_i \in ISA$

Peterson, et al. Quantum 4 (2020)

Basis coverage volumes

Monodromy polytopes finds minimum gate
applications for any 2Q target gate!

Target\Basis	iSWAP
CNOT	2.0
SWAP	3.0
Haar	3.0

Peterson, et al. **Quantum 4** (2020) McKinney, et al. **ISCA** (2023)

> Monodromy polytopes finds minimum gate applications for any 2Q target gate!

Decomposition gate count costs

Target\Basis	iSWAP	\sqrt{iSWAP}	СХ	\sqrt{CX}	В	\sqrt{B}
CNOT	2.0	2.0	1.0	2.0	2.0	2.0
SWAP	3.0	3.0	3.0	6.0	2.0	4.0
Haar	3.0	2.2	3.0	3.5	2.0	3.1

Peterson, et al. Quantum 4 (2020) McKinney, et al. ISCA (2023)

Basis coverage volumes

Monodromy polytopes finds minimum gate applications for any 2Q target gate!

Decomposition gate count costs

Target\Basis	iSWAP	\sqrt{iSWAP}	СХ	\sqrt{CX}	В	\sqrt{B}
CNOT	2.0	2.0	1.0	2.0	2.0	2.0
SWAP	3.0	3.0	3.0	6.0	2.0	4.0
Haar	3.0	2.2	3.0	3.5	2.0	3.1

Peterson, et al. Quantum 4 (2020)

McKinney, et al. ISCA (2023)

Limitation of SNAIL when driving both gain and conversion

Zhou, et al. npj Quantum Inf 9, 54 (2023).

Module Q₁ S Q₄

Drives applied between SNAIL and qubit

Measure second qubit to witness SNAIL breakpoint

Module

Drives applied between SNAIL and qubit

Measure second qubit to witness SNAIL breakpoint

Limitation of SNAIL when driving both gain and conversion

Zhou, et al. npj Quantum Inf 9, 54 (2023).

Limitation of SNAIL when driving both gain and conversion

Zhou, et al. npj Quantum Inf 9, 54 (2023).

Drives applied between SNAIL and qubit

Measure second qubit to witness SNAIL breakpoint

0.0 Decomposition normalized *duration* costs

Target\Basis	iSWAP	\sqrt{iSWAP}	СХ	\sqrt{CX}	В	\sqrt{B}
Duration	1.0	0.5	1.8	0.9	1.4	0.7
CNOT	2.0	1.0	1.8	1.8	2.8	1.4
SWAP	3.0	1.5	5.4	5.4	2.8	2.8
Haar	3.0	1.1	5.4	3.2	2.8	2.2

|g\ percent

Limitation of SNAIL when driving both gain and conversion

Zhou, et al. npj Quantum Inf 9, 54 (2023).

Module

Drives applied between SNAIL and qubit

Measure second qubit to witness SNAIL breakpoint

0.0 Decomposition normalized *duration* costs

Target\Basis	iSWAP	√iSWAP	СХ	\sqrt{CX}	В	\sqrt{B}
Duration	1.0	0.5	1.8	0.9	1.4	0.7
CNOT	2.0	1.0	1.8	1.8	2.8	1.4
SWAP	3.0	1.5	5.4	5.4	2.8	2.8
Haar	3.0	1.1	5.4	3.2	2.8	2.2

NATLAN

Extending the module

Extending the module

Connectivity reduces circuit costs

McKinney, et al. HPCA (2023)

Alternative designs?

SNAIL and qubit frequencies **must yield unique sets of parametric drives** per neighborhoods

Maximum incident edges per node (N)? Maximum adjacent vertices (M)? Maximum vertex variants (k)?

Spectral crowding of terms

Spectator error budgeting

- Intra-module terms protected by frequency separation
- Inter-module terms protected by weak SNAIL-SNAIL hybridization

When is RWA a good approximation?

Error budget as a separation design constraint

HATLAB

Satisfying constraints using linear programming

Qubit bandwidth [4,6] GHz

McKinney, et al. arXiv:2409.18262 (2024)

Binary search:

maximum conversion separation (y-axis) given minimum qubit separation (x-axis)

Next steps:

- Constraints for SNAIL-qubit conversion
- Multi-qubit gate + speed limits
- Scheduling pulses for double SNAILS

Physical realization of the module (and potential problems?)

Corral

Decomposition identities

Schuch, et al. **Physical Review A 67.3** (2003) Huang, et al. **Physical Review Letters** (2023)

McKinney, et al. HPCA (2024)

Mirror-inclusive coverage sets

Compute effective coverage volumes using monodromy polytopes

Monte Carlo Haar scores

Monte Carlo Haar scores

relative decrease in total infidelity

Lao, et al. **ISCA** (2021) McKinney, et al. **HPCA** (2024)

Why does this work?

CPHASE gates mirror to pSWAP gates

H

Peterson, et al. Quantum 6 (2022)

Why does this work?

Peterson, et al. Quantum 6 (2022)

Using mirrors for data movement

Intuition: For every CX, decide whether output qubit ordering is (q0, q1) or (q1, q0) based on whether it makes the qubits closer to their next qubit pair

McKinney, et al. HPCA (2024)

Mirage flow

- Simple yet powerful modification to SABRE:
 - Each gate must pass through an Intermediate Layer
 - > Considers if substituting the *mirror* would reduce topological distance cost

Li, et al. ASPLOS (2019)

Mirage flow

- Simple yet powerful modification to SABRE:
 - Each gate must pass through an Intermediate Layer
 - > Considers if substituting the *mirror* would reduce topological distance cost

Li, et al. ASPLOS (2019)

Circuit depth reduction

Circuit depth reduction

Qiskit Transpiler Plugin

- Software optimizations:
 - Depth post-selection criteria
 - Variable mirror acceptance thresholds
 - Fast block consolidate w/ coord caching

https://github.com/Pitt-JonesLab/mirror-gates

Conclusions

- > Evaluate \sqrt{iSWAP} as a choice basis gate for optimized quantum ISAs
- Qubit frequency allocation over hardware-aware gate errors for SNAIL Corral design
- Significant circuit optimization with MIRAGE, reducing depth by ~30%

